
memoryF11TOPAS-Academic

Technical Reference

Version 8

Alan A Coelho www.topas-academic.net

 November 7, 2025

Ab initio solution of proteins at atomic resolution, Fast simultaneous refinement of

1000s of data sets, Amazon EC2 cloud computing (experimental), PDF Generation,

Deconvolution, Capillary aberration, LP-Search, Sine Transform, DPI awareness,

Peak fitting, Pawley & Le Bail refinement, Rietveld refinement, PDF Generation, PDF

refinement, Magnetic structures, CW Neutron refinement, TOF refinement, Stack-

ing-faults, Laue refinement, Indexing, Charge flipping, Structure solution, Decon-

volution and K1 stripping, Penalties, Restraints.

http://www.topas-academic.net/

Introduction 1

1 Introduction

Contents

1. INTRODUCTION ... 8

1.1 RUNNING TOPAS IN HIGH PRIORITY MODE .. 8
1.1.1 Running TA.EXE in high priority mode (TOPASH.BAT) ... 9
1.1.2 Running TC.EXE in high priority mode .. 9

1.2 CONVENTIONS .. 9
1.3 INPUT FILE EXAMPLE (INP FORMAT) ... 9
1.4 TEST EXAMPLES .. 10
1.5 TC-INPS.BAT AND THE AAC$ MACRO ... 10
1.6 TOPAS IS 64 BIT .. 11

2. PARAMETERS .. 12

2.1 WHEN IS A PARAMETER REFINED ... 12
2.2 USER DEFINED PARAMETERS - THE PRM/LOCAL KEYWORDS .. 12
2.3 PARAMETER ATTRIBUTES ... 12
2.4 PARAMETER CONSTRAINTS .. 13
2.5 THE LOCAL KEYWORD .. 14
2.6 DEFINING LOCAL PARAMETERS USING $.. 15
2.7 REPORTING ON EQUATION VALUES .. 15
2.8 NAMING OF EQUATIONS ... 16
2.9 EXISTING_PRM ... 16
2.10 STRING, CONCAT, TO_STRING AND TO_PRM FUNCTIONS ... 17
2.11 STARTING A PARAMETER WITH A RANDOM NUMBER ... 17
2.12 USING THE % EQUATION CHARACTER TO DEFINE A PARAMETER NAME 17
2.13 DUMMY AND DUMMY_PRM KEYWORDS .. 18
2.14 PARAMETER ERRORS AND CORRELATION MATRIX ... 18
2.15 DEFAULT PARAMETER LIMITS AND LIMIT_MIN / LIMIT_MAX... 18
2.16 RESERVED PARAMETER NAMES ... 19
2.17 VAL AND CHANGE RESERVED PARAMETER NAMES .. 21

2.17.1 The "load { }" keyword and attribute equations ... 22
2.17.2 The "move_to $keyword" keyword ... 22

2.18 AUTOMATICALLY SAVING AND LOADING PARAMETERS - LOAD_SAVE_LOCALS 22
2.19 USING LOCAL TO ASSIST IN USING “FOR ... {}” LOOPS ... 24
2.20 OUT_DEPENDENCES AND OUT_DEPENDENCES_FOR .. 25
2.21 THE NUM_RUNS KEYWORD AND PREPROCESSOR SPECIFICS ... 26

2.21.1 Reserved macro names .. 27
2.21.2 The #list directive – creating arrays of macros .. 27
2.21.3 Getting the number of items in a #list using #list_n .. 28
2.21.4 The File_Variable and File_Variables macro ... 28

2.22 INGESTING FILES INTO AN INP FILE USING #INGEST .. 30
2.23 #EXTERNAL_INP - USING EXTERNAL INP FILES ... 30

3. EQUATION OPERATORS AND FUNCTIONS .. 32

3.1 'IF' AND NESTED 'IF' STATEMENTS .. 35
3.2 FLOATING POINT EXCEPTIONS .. 35

4. THE MINIMIZATION ROUTINES ... 37

Introduction 2

2 Introduction

4.1 THE CONJUGATE GRADIENT SOLUTION METHOD ... 39
4.2 THE MARQUARDT METHOD .. 40
4.3 APPROXIMATING THE A MATRIX - THE BFGS METHOD ... 40
4.4 SETTING A-MATRIX ELEMENTS THAT MUST-BE-ZERO TO ZERO .. 40
4.5 LINE MINIMIZATION AND PARAMETER EXTRAPOLATION ... 41
4.6 RESTRAINTS AND PENALTIES .. 41
4.7 MINIMIZING ON PENALTIES ONLY ... 43
4.8 SAVED REFINED VALUES AND SAVE_BEST_CHI2 .. 43
4.9 ERROR CALCULATION .. 43
4.10 ERROR DETERMINATION USING SVD AND BOOTSTRAP ERRORS ... 43
4.11 ERROR PROPAGATION USING PRM_WITH_ERROR .. 44
4.12 XDD_SUM AND XDD_ARRAY ... 44
4.13 REFINING ON AN ARBITRARY CHI2 ... 45
4.14 REPORTING ON UNREFINED PARAMETERS .. 46
4.15 SUMMARY, ITERATION AND REFINEMENT CYCLE ... 47
4.16 QUICK_REFINE AND COMPUTATIONAL ISSUES ... 47
4.17 SIMULATED ANNEALING AND AUTO_T .. 49
4.18 ADAPTIVE STEP SIZE USING RANDOMIZE_ON_ERRORS ... 49
4.19 CRITERIA OF FIT .. 49

5. PEAK GENERATION AND "PEAK_TYPE" .. 51

5.1 SOURCE EMISSION PROFILES ... 51
5.2 PEAK GENERATION AND PEAK TYPES ... 52
5.3 CONVOLUTION AND THE PEAK GENERATION STACK .. 54
5.4 SPEED / ACCURACY AND PEAK_BUFFER_STEP .. 55
5.5 THE PEAKS BUFFER, SPEED AND MEMORY CONSIDERATIONS ... 56
5.6 AN ACCURATE VOIGT .. 57
5.7 STRETCHING PEAKS ... 58
5.8 TRANSFORM_X WITHOUT RECALCULATING PATTERNS .. 59

6. REUSING OBJECTS IN LARGE REFINEMENTS .. 60

7. DECONVOLUTION ... 64

7.1 DECONVOLUTION – SIMULATED PATTERN .. 66

8. PDF-GENERATION .. 69

8.1 PDF-GENERATING - LIFEPO4... 69
8.1.1 Operation 0 – Fitting peaks to the diffraction pattern ... 72
8.1.2 Operation 1 – Generation G(r) from the fitted peaks .. 73
8.1.3 Correcting the PDF due to a zero error in reciprocal space 75
8.1.4 Generating F(Q) from G(r) - gr_to_fq ... 76
8.1.5 PDF-Generation - Fullerene .. 77

9. PDF REFINEMENT.. 80

9.1 DISPLAYING PARTIAL PDFS ... 82
9.2 PDF_ONLY_EQ_0 ... 82
9.3 INTER AND INTRA MOLECULE FWHMS ... 84
9.4 INSTRUMENT SINC FUNCTION SINC-1.INP ... 86
9.5 WEIGHTING OF PDF AND 2-THETA TYPE DATA .. 86
9.6 TEST_EXAMPLES\PDF\BEQ-2.INP .. 86
9.7 TEST_EXAMPLES\PDF\BEQ-3.INP .. 86
9.8 SPEEDING UP REFINEMENT WITH REBIN_WITH_DX_OF .. 87

Introduction 3

3 Introduction

9.9 REFINING ON BEQ PARAMETERS .. 87
9.10 REFINING ON ADPS IN PDF REFINEMENT – UIJ PARAMETERS ... 88
9.11 MULTIATOM APPROACH TO ADPS IN PDF REFINEMENT .. 88
9.12 STRUCTURE SOLUTION, SIMULATED ANNEALING .. 91
9.13 RIGID BODIES WITH PDF DATA ... 91
9.14 OCCUPANCY MERGING WITH PDF DATA ... 91
9.15 EQUIVALENCE OF PDF_GAUSS_FWHM AND BEQ FOR ONE ATOM TYPE 91

10. STACKING FAULTS .. 93

10.1 FITTING TO A DEBYE-FORMULAE PATTERN USING ‘STACK’... 94
10.2 FITTING TO KAOLINITE DATA ... 95
10.3 STACKING FAULTS AND GENERATING SEQUENCES OF LAYERS .. 96

10.3.1 Generating the same stacking sequences each run .. 97
10.3.2 The SF_Smooth macro .. 97
10.3.3 Fitting to DIFFaX test diamond data ... 97
10.3.4 Stacking faults from layers of different layer heights ... 98
10.3.5 Rietveld-Generated example .. 98
10.3.6 Refining on layer heights ... 99

11. QUANTITATIVE ANALYSIS ... 100

11.1 SUMMARY OF QUANT EXAMPLES ... 100
11.2 ELEMENTAL WEIGHT PERCENT CONSTRAINT ... 101
11.3 ELEMENTAL COMPOSITION AND RESTRAINTS .. 101
11.4 AMORPHOUS PHASE COMPOSITION ... 102
11.5 USING A DUMMY_STR PHASE TO DESCRIBE AMORPHOUS CONTENT 103
11.6 QUANT USING HKL_IS OR OTHER NON-STR PHASES .. 104
11.7 EXTERNAL STANDARD METHOD ... 105
11.8 QUANT KEYWORDS ... 105

12. MAGNETIC STRUCTURE REFINEMENT ... 108

12.1 MAGNETIC REFINEMENT WARNINGS/EXCEPTIONS .. 109
12.2 DISPLAYING MAGNETIC MOMENTS .. 109
12.3 ‘DECOMPOSING’ FMAG FOR SPEED ... 109

13. RIGID BODIES.. 111

13.1 FRACTIONAL, CARTESIAN AND Z-MATRIX COORDINATES .. 112
13.2 TRANSLATING PART OF A RIGID BODY .. 113
13.3 ROTATING PART OF A RIGID BODY AROUND A POINT .. 114
13.4 ROTATING PART OF A RIGID BODY AROUND A LINE .. 115

13.4.1 Using Z-matrix together with rotate and translate .. 117
13.5 THE SIMPLEST OF RIGID BODIES .. 118
13.6 GENERATION OF RIGID BODIES ... 119
13.7 RIGID BODY PARAMETER ERRORS PROPAGATED TO FRACTIONAL COORDINATES 119
13.8 Z-MATRIX COLLINEAR ERROR INFORMATION ... 120
13.9 FUNCTIONS ALLOWING ACCESS TO RIGID-BODY FRACTIONAL COORDINATES 121
13.10 DETERMINING THE ORIENTATION OF A KNOWN FRAGMENT.. 121
13.11 RIGID BODY MACROS ... 121

14. INDEXING .. 124

14.1 FIGURE OF MERIT .. 125
14.2 EXTINCTION SUBGROUP DETERMINATION .. 125
14.3 REPROCESSING SOLUTIONS - DET FILES ... 125

Introduction 4

4 Introduction

14.4 KEYWORDS AND DATA STRUCTURES ... 126
14.5 KEYWORDS IN DETAIL ... 127
14.6 IDENTIFYING DOMINANT ZONES .. 129
14.7 *** PROBABLE CAUSES OF FAILURE *** ... 130
14.8 SPACE GROUPS WITH IDENTICAL ABSENCES – EXTINCTION SUBGROUPS 130
14.9 INDEXING EQUATIONS - BACKGROUND .. 132

15. ENERGY MINIMIZATION .. 134

15.1 REPORTING ON THE MADELUNG CONSTANT ... 134
15.2 REPORTING ON THE COULOMB POTENTIAL AT A SITE ... 134
15.3 ENHANCEMENTS TO THE GRS_INTERACTION... 135
15.4 INCLUDING LATTICE PARAMETER IN GRS_INTERACTION(S) .. 136
15.5 IGNORING THE COULOMB PART OF THE GRS_INTERCATION .. 136
15.6 _REM ATTRIBUTE - REMOVING/INSERTING PARAMETERS FROM REFINEMENT 137
15.7 USING OK_TO_CONTINUE AND _REM ... 137
15.8 ENERGY MINIMIZATION-ONLY RESULTING IN THE OBSERVED STRUCTURE OF ALVO4 139
15.9 DETERMINING REPULSION PARAMETERS FOR ALVO4 ... 139
15.10 A NON-IONIC MODEL FOR ALVO4... 141

16. MOLECULAR DYNAMICS (MD) .. 143

16.1 MOLECULAR DYNAMICS IN A GENERAL MANNER .. 143
16.2 MOLECULAR DYNAMICS FOR ATOMS .. 143
16.3 APPLYING A FORCE ON ATOMS .. 147

17. AMAZON EC2 CLOUD COMPUTING ... 149

17.1 OPERATION ... 150
17.2 PRE-REQUISITES ... 150
17.3 PRICING OF AWS CLOUD RESOURCES ... 151
17.4 AWS DASHBOARD AND OPERATING TC-CLOUD ... 151
17.5 INSTALLING AWS CLI ON THE LOCAL COMPUTER .. 152
17.6 OPERATING TC-CLOUD FROM TOPAS (GUI) .. 152
17.7 TERMINATING/STOPPING TC-VMS AND TC-MON.A.. 155
17.8 POWERING OFF TC-VMS AFTER 100 MINUTES OF INACTIVITY ... 156
17.9 RETRIEVING THE INP OR FC FILE THAT GAVE THE BEST GOF .. 156
17.10 MONITORING, TC-CLOUD IS INDEPENDENT OF THE LOCAL COMPUTER 156
17.11 RANDOM NUMBER GENERATOR AUTOMATICALLY SEEDED ... 156
17.12 CLOUD__ #DEFINE AND GET(CLOUD_RUN_NUMBER) .. 157
17.13 ‘SETUP CLOUD’ DETAILS... 157
17.14 ‘VIRTUAL MACHINES’ TAB OPTIONS ... 159
17.15 CREATING TC-VMS – SPOT INSTANCES ... 160
17.16 CHOOSING THE OPTIMUM VM TYPE ... 161
17.17 UNABLE TO CONNECT TO TC-VMS AFTER LOCAL COMPUTER RESTART 162

18. PROTEIN REFINEMENT ... 163

18.1 READING PROTEIN DATA BANK (PDB) CIF FILES .. 163
18.2 PROTEIN REFINEMENT, 6Y84, SARS-COV-2 MAIN PROTEASE ... 164

19. SOLVING PROTEINS AT ATOMIC RESOLUTION ... 166

19.1 AB INITIO SOLUTION OF TRICLINIC 4LZT ... 169
19.2 SOLUTION OF NON-TRICLINIC LATTICES USING A KNOWN ATOMIC POSITION 170
19.3 AB INITIO SOLUTION OF 5DA6 IN SPACE GROUP R32 ... 172

Introduction 5

5 Introduction

20. MISCELLANOUS .. 173

20.1 OUTPUTTING SPECIAL CHARACTERS ... 173
20.2 ITERATING OVER INTERNAL DATA-TREE NODES USING ‘FOR’ .. 173
20.3 COMMAND PROMPT OUTPUT DURING INP FILE LOADING USING PRINT 173
20.4 SORTING OUTPUT BY COLUMNS USING _SORT_DEC OR _SORT_INC 174
20.5 CREATING MANY XDDS AT ONCE USING NEW AND XDD_FILE .. 174
20.6 SEED, #SEED_EQN, SEED-TC.TXT, SEED-TB.TXT, RAND ... 174
20.7 THREADING ... 175

20.7.1 Setting the maximum number of threads .. 175
20.8 RESTRAINING BACKGROUND USING THE BKG_AT FUNCTION ... 175
20.9 CALCULATION OF STRUCTURE FACTORS .. 176

20.9.1 Friedel pairs .. 178
20.9.2 Powder data ... 178
20.9.3 Single crystal data ... 179
20.9.4 The Flack parameter .. 180
20.9.5 Single Crystal Output .. 180
20.9.6 2θ point by point calculation of f0 and beq ... 180

20.10 CONVOLUTION .. 180
20.10.1 Instrument and sample convolutions .. 180
20.10.2 Convolutions in general .. 181
20.10.3 Capillary convolution for a focusing convergent beam 183
20.10.4 ft_conv .. 183
20.10.5 WPPM ... 186
20.10.6 Microstructure convolutions .. 188

20.11 LOADING OF INP FILES .. 190
20.11.1 if {} else if {} else {} .. 190

20.12 FUNCTIONS – FN, DEF, RETURN, NOINLINE .. 191
20.12.1 Subject independent single crystal refinement .. 194
20.12.2 Computer algebra and out_refinement_stats ... 194

20.13 CIF .. 195
20.14 LAUE REFINEMENT .. 195
20.15 LEARNT SHAPES FOR BACKGROUND OR OTHERWISE .. 196
20.16 EMISSION PROFILE WITH ABSORPTION EDGES .. 198
20.17 SCALE_PHASE_X KEYWORD ... 199
20.18 REFINING ON F0, F’ AND F” ... 200

20.18.1 Using a user defined table to input f0 values via user_y 200
20.19 INVALID F1 AND F11 ... 201
20.20 ISOTOPES AND ATOM NAMES ... 201
20.21 ATOMIC DATA FILES AND ASSOCIATED SOURCES ... 202
20.22 REMOVING PHASES DURING REFINEMENT ... 203
20.23 NUMERICAL LORENTZIAN AND GAUSSIAN CONVOLUTIONS .. 203
20.24 SPACE GROUPS, HKLS AND SYMMETRY OPERATORS .. 203

20.24.1 User defined rotational matrices.. 204
20.25 DEFINING HKLS USING USE_HKLM ... 204
20.26 CROSS CORRELATION FUNCTION .. 204
20.27 SITE IDENTIFYING STRINGS .. 206
20.28 OCCUPANCIES AND SYMMETRY OPERATORS ... 206
20.29 PAWLEY AND LE BAIL EXTRACTION .. 206
20.30 ANISOTROPIC REFINEMENT MODELS .. 207

20.30.1 Spherical harmonics ... 207

Introduction 6

6 Introduction

20.30.2 Miscellaneous models using User defined equations 207
20.31 SIMULATED ANNEALING AND STRUCTURE DETERMINATION ... 208

20.31.1 Penalties used in structure determination .. 209
20.31.2 Bond length restraints ... 210

20.32 NOT SAVING EXTRAPOLATED PEAKS WHEN DOING INTENSITY DERIVATIVES 211
20.33 APPLYING LP_SEARCH TO TOF DATA .. 211
20.34 CORRECTION FOR DISPERSION USING MODIFY_PEAK_EQN .. 211
20.35 FILE TYPES AND FORMATS.. 213
20.36 BATCH MODE OPERATION – TC.EXE.. 214

21. KEYWORDS ... 216

21.1 DATA STRUCTURES .. 216
21.2 ALPHABETICAL LISTING OF KEYWORDS .. 220

22. MACROS AND INCLUDE FILES ... 249

22.1 THE MACRO DIRECTIVE ... 249
22.1.1 Directives with global scope ... 250
22.1.2 Pre-processor equations and #prm, #if, #elseif, #out 251
22.1.3 A macro that repeats text using #out ... 252
22.1.4 Directives invoked on macro expansion .. 253
22.1.5 Defining unique parameters within macros .. 254
22.1.6 Superfluous parentheses and the '&' Type for macros..................................... 254

22.2 OVERVIEW .. 255
22.2.1 xdd macros ... 256
22.2.2 Lattice parameters .. 256
22.2.3 Emission profile macros ... 256
22.2.4 Instrument and instrument convolutions .. 256
22.2.5 Phase peak_type's ... 258
22.2.6 Quantitative Analysis ... 258
22.2.7 2Th Corrections ... 258
22.2.8 Intensity Corrections ... 258
22.2.9 Bondlength penalty functions... 259
22.2.10 Reporting macros .. 260
22.2.11 Neutron TOF ... 262
22.2.12 Miscalleneous .. 262

23. INDEXING .. 264

23.1 FIGURE OF MERIT .. 265
23.2 EXTINCTION SUBGROUP DETERMINATION .. 265
23.3 REPROCESSING SOLUTIONS - DET FILES ... 265
23.4 KEYWORDS AND DATA STRUCTURES ... 266
23.5 KEYWORDS IN DETAIL ... 267
23.6 IDENTIFYING DOMINANT ZONES .. 269
23.7 *** PROBABLE CAUSES OF FAILURE *** ... 270
23.8 SPACE GROUPS WITH IDENTICAL ABSENCES – EXTINCTION SUBGROUPS 270
23.9 INDEXING EQUATIONS - BACKGROUND .. 272

24. CHARGE-FLIPPING ... 274

24.1 CHARGE-FLIPPING USAGE ... 276
24.1.1 Perturbations ... 276
24.1.2 The Ewald sphere, weak reflections and CF termination................................. 277

Introduction 7

7 Introduction

24.1.3 Powder data considerations ... 277
24.2 CHARGE-FLIPPING INVESTIGATIONS / TUTORIALS .. 280

24.2.1 Preventing uranium atom solutions using pick_atoms 280
24.2.2 The tangent formula on powder data ... 280
24.2.3 Pseudo symmetry – 441 atom oxide .. 281
24.2.4 Origin finding and symmetry_obey_0_to_1 .. 281
24.2.5 symmetry_obey_0_to_1 on poor resolution data .. 281
24.2.6 Sharpening clouds - extend_calculated_sphere_to ... 282
24.2.7 A difficult powder, CF-SUCROSE.INP .. 283
24.2.8 Increasing contrast in R-factors ... 283

24.3 CHARGE FLIPPING AND NEUTRON_DATA ... 283
24.4 CHARGE-FLIPPING EXAMPLES .. 284
24.5 KEYWORDS IN DETAIL ... 285

25. GUI FUNCTIONALITY ... 294

1.1 TOPAS IS DPI AWARE ... 294
1.2 ANTIALIASING AND OPENGL ... 294
1.3 SCAN-WINDOW VIEWING OPERATIONS ... 294
1.4 SELECTING FILES FOR DISPLAY USING GREP REGULAR EXPRESSIONS 294
1.5 GUI_TEXT KEYWORD NOW IGNORED BY THE KERNEL .. 295
1.6 DISPLAYING A PHASE WITH AND WITHOUT BACKGROUND ... 296
1.7 HOW ATOMS ARE DISPLAYED IN OPENGL .. 296
1.8 TRACKING ATOMIC MOVEMENTS GRAPHICALLY .. 296
1.9 X_CALCULATION_STEP DELETED WHEN CONSTANT X-AXIS STEP SIZE DETECTED 297
1.10 HIDE_PEAK_STICKS ... 297
25.1 USER DEFINED PHASE COLOUR, LINE WIDTH AND POINT SIZE (_CLP) 298
25.2 HIGHLIGHTING/DISPLAYING PHASES AND HKL TICK MARKS ... 298
25.3 TOF X-AXIS CAN BE DISPLAYED AS D-SPACING, Q OR TOF .. 300
25.4 SURFACE PLOTS – 2D WITH OFFSETS ... 300

25.4.1 Display hkl ticks on Surface plots .. 300
25.4.2 hkl ticks are now corrected for zero errors .. 301
25.4.3 Inserting peaks and identifying scans .. 301
25.4.4 2D-offset Surface plots ... 302
25.4.5 2D-offset Planview plots ... 303
25.4.6 OpenGL Surface plots ... 305
25.4.7 OpenGL – Weighted difference for colours ... 306

25.5 NORMALIZING SCANS WITHIN A SCAN WINDOW ... 306
25.6 PLOTTING PHASES ABOVE BACKGROUND... 306
25.7 PLOTTING FIT_OBJS ... 307
25.8 DISPLAY OF NORMALIZED SIGMAYOBS^2 ... 308
25.9 CUMULATIVE CHI2 ... 308
25.10 CORRELATION MATRIX DISPLAY .. 309
25.11 FADING A STRUCTURE .. 310
25.12 NORMALS PLOT ... 310
25.13 IMPROVEMENTS TO THE GRID ... 311
25.14 MOUSE OPERATION IN OPENGL GRAPHICS ... 312

26. REFERENCES .. 313

Introduction 8

8 Introduction

1. .. INTRODUCTION
This document describes the kernel operation of TOPAS-Academic including its macro lan-
guage. The kernel is written in ANSI c++ with internal data structures comprising a tree similar-
to an XML representation. Individual tree nodes correspond to c++ objects; understanding the
internal structures facilitates program operation. Input is through an input file (*.INP) compris-
ing readable keywords and macros, the latter being groupings of keywords. The kernel pre-pro-
cesses the INP file expanding macros as required; the resulting pre-processed file (written to
TOPAS.LOG) comprises keywords that are operated on by the kernel. On parsing the INP file the
kernel creates its internal data structures. The main tree-node objects are:

xdd...
bkg
str...
xo_Is...
d_Is...
hkl_Is...
fit_obj...

: Background.
: Structure information for Rietveld refinement.
: 2-I values for single line or whole powder pattern fitting.
: d-I values for single line or whole powder pattern fitting.
: Lattice information for Le Bail or Pawley fitting.
: User defined fit models.

str, xo_Is, d_Is and hkl_Is are referred to as "phases" and the peaks of these "phase peaks". A
listing of the data structures is given in section 21.1.

1.1 Running TOPAS in high priority mode

Windows is becoming more guarded with the compiler not producing EXE files that run in a
high priority mode. This slows down TOPAS appreciably when running large refinements, es-
pecially when accompanied by large memory usage. The solution is to run the program in high-
priority-mode. Below shows a factor of 10+ difference in running-time when running XRD-CT-
1.INP using TC.EXE.

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

)

Iteration Number

TEST_EXAMPLES\XRD-CT\XRD-CT-1.INP

Not running in high priority mode

Running in high priority mode

Introduction 9

9 Introduction

When not running in high priority mode, time per iteration slows downs appreciably after iter-
ation 16.

1.1.1 Running TA.EXE in high priority mode (TOPASH.BAT)

Run the following from the command line:

start "" /high "ta"

Or, run the batch file TOPAS-HIGH-PRIORITY.BAT or TAH.BAT.

1.1.2 Running TC.EXE in high priority mode

From the command prompt, use the following to start the command prompt:

start /high "cmd"

Or, run the command as an administrator from the start menu by typing ‘command’ and then
choose the “Run as administrator”.

1.2 Conventions

• Keywords look like this.
• Macros look like this.
• Keywords enclosed in square brackets [] are optional.
• Keywords ending in ... indicate that multiple keywords of that type are allowed.
• Text beginning with the character # corresponds to a number.
• Text beginning with the character $ corresponds to a string.
• E after keyword: corresponds to an equation (i.e. = a+b;) or constant (i.e. 1.245) or a param-

eter name with a value (i.e. lp 5.4013) that can be refined.
• !E after keyword: corresponds to an equation or constant or a parameter name with a value

that cannot be refined.

To avoid input errors, it is useful to differentiate between keywords, macros, parameter names,
and reserved parameter names. The conventions followed are:

Keywords :
Parameter names :

Macro names :
Reserved parameter names :

all lower case
first letter in lower case
first letter in upper case
first letter in upper case

1.3 Input file example (INP format)

The following is an example input file for Rietveld refinement of corundum and fluorite:

Introduction 10

10 Introduction

‘ Rietveld refinement comprising two phases
xdd File_Name.xy

CuKa5(0.001) ‘ Emission profile
Radius(217.5) ‘ Diffractometer radius
LP_Factor(26.4) ‘ Lorentz polarization
Slit_Width(0.1) ‘ Receiving slit width
Divergence(1) ‘ Equatorial divergence
Full_Axial_Model(12, 15, 12, 2.3, 2.3) ‘ Axial divergence
Zero_Error(@, 0)
bkg @ 0 0 0 0 0 0
STR(R-3C, "Corundum Al2O3")

Trigonal(@ 4.759, @ 12.992)
site Al x 0 y 0 z @ 0.3521 occ Al+3 1 beq @ 0.3
site O x @ 0.3062 y 0 z 0.25 occ O-2 1 beq @ 0.3
scale @ 0.001
CS_L(@, 100)
r_bragg 0

STR(Fm-3m, Fluorite)
Cubic(@ 5.464)
site Ca x 0 y 0 z 0 occ Ca 1 beq @ 0.5
site F x 0.25 y 0.25 z 0.25 occ F 1 beq @ 0.5
scale @ 0.001
CS_L(@, 100)
r_bragg 0

The format is case sensitive. Optional indentation can be used to show tree dependencies.
Placement of keywords within a tree level is not important. For example, the keyword str sig-
nifies that all information (pertaining to str) occurring between this keyword and the next level
of the same type (in this case str) applies to the first str. All input text streams can have line
and/or block comments. A line comment is indicated by the character ' and a block comment
by an opening /* and closing */. Text from the line comment character to the end of the line is
ignored. Text within block comments is ignored; block comments can be nested. Here are
some examples:

‘ This is a line comment
space_group C2/c ‘ This is also a line comment
/* This is a block comment.

A block comment can comprise any number of lines. */

On termination of refinement an output file (*.OUT) similar-to the input file is created with re-
fined values updated.

1.4 Test examples

The directory TEST_EXAMPLES contain examples that can act as templates for creating INP
files. In addition, charge-flipping examples are found in the CF directory and indexing examples
in the INDEXING directory.

1.5 TC-INPS.BAT and the aac$ macro

The batch file TC-INPS.BAT runs over 180 test examples in a few minutes. These examples play
an important role in program testing. Arguments passed via the command line to the test

Introduction 11

11 Introduction

examples can contain the aac$ macro. If defined, aac$ is expanded at the bottom of the INP
file. For example, to terminate refinement after 100 iterations the following could be used:

tc test_examples\pdf\alvo4\rigid "macro aac$ { iters 100 verbose 0 }"

1.6 TOPAS is 64 bit

The command line TC.EXE and the GUI TA.EXE both run on the Windows 64-bit operating sys-
tem.

Parameters 12

12 Parameters

2. .. PARAMETERS

2.1 When is a parameter refined

A parameter is flagged for refinement by giving it a name. The first character can be an upper
or lower-case letter. Subsequent characters can include the underscore character '_' and the
numbers 0 through 9. For example:

site Zr x 0 y 0 z 0 occ Zr+4 1 beq b1 0.5

Here b1 is the name given to the beq parameter. No restrictions are placed on the length of
parameter names. The character ! placed before b1, as in !b1, signals that b1 is not to be re-
fined, for example:

site Zr x 0 y 0 z 0 occ Zr+4 1 beq !b1 0.5

A parameter can also be flagged for refinement by placing the @ character at the start of its
name. Internally the parameter is given a unique name and treated as an independent param-
eter. The b1 text in the following is ignored:

site Zr x 0 y 0 z 0 occ Zr+4 1 beq @ 0.5
or, site Zr x 0 y 0 z 0 occ Zr+4 1 beq @b1 0.5

2.2 User defined parameters - the prm/local keywords

The [prm|local E] keywords defines a new parameter. For example:

prm b1 0.2 ‘ b1 is the name given to this parameter
 ‘ 0.2 is the initial value
site Zr x 0 y 0 z 0 occ Zr+4 0.5 beq = 0.5 + b1;
 occ Ti+4 0.5 beq = 0.3 + b1;

Here b1 is a new parameter that will be refined; this example demonstrates adding a constant
to a set of beq's. Note the use of the '=' sign after the beq keyword; this indicates that the pa-
rameter is in the form of an equation. In the following example, b1 is used but not refined:

prm !b1 0.2
site Zr x 0 y 0 z 0 occ Zr+4 0.5 beq = 0.5 + b1;
 occ Ti+4 0.5 beq = 0.3 + b1;

2.3 Parameter attributes

The following optional parameter attributes can be assigned to a parameter:

[min !E] [max !E] [del !E] [update !E] [stop_when !E] [val_on_continue !E] [_rem !E]

_rem is described in section 15.6. Attributes are equations and cannot have a parameter
name; they can however be a function of other parameter names. The min and max attributes

can be used to limit parameter values during refinement, for example:

Parameters 13

13 Parameters

prm a 0.1 min 0 max = 10;
prm b 0.2 min = a; max = 10;

Here b is constrained to within the range 0.1 and 10. Limits are effective in refinement stabili-
zation. del is used for calculating numerical derivatives with respect to the calculated pattern;
typically, internal default del values are adequate in most circumstances. Parameter values
are updated at the end of an iteration as follows:

new_Val = old_Val + Change

When update is defined then the following is used:

new_Val = “update equation”

update can additionally be a function of the reserved parameter names Change and Val. The
use of update does not negate min and max. stop_when is a conditional statement used as a
stopping criterion. In this case convergence is determined when stop_when evaluates to a
non-zero value for all defined stop_when attributes, as defined for independent parameters,
and when the chi2_convergence_criteria condition has been met. val_on_continue is evalu-
ated when continue_after_convergence is defined. It provides a means of changing parameter
values after refinement convergence where:

new_Val = val_on_continue

Here are example attribute equations as applied to the x parameter:

x @ 0.1234
min = Val - 0.2;
max = Val + 0.2;
update = Val + Rand(0, 1) Change;
stop_when = Abs(Change) < 0.000001;

2.4 Parameter constraints

Equations can be a function of parameter names; this provides a mechanism for introducing
linear and non-linear constraints, for example:

site Zr x 0 y 0 z 0 occ Zr+4 zr 1 beq 0.5
 occ Ti+4 = 1-zr; beq 0.3

Here the zr parameter is used in the equation "= 1-zr;"; this equation defines the Ti+4 site oc-
cupancy. Note, equations start with an equal sign and end in a semicolon. Limiting zr with
min/max can be performed as follows:

site Zr x 0 y 0 z 0 occ Zr+4 zr 1 min 0 max 1 beq 0.5
 occ Ti+4 = 1 - zr; beq 0.3

Here zr will be constrained to within 0 and 1. An example constraining the lattice parameters
a, b, c to the same value as required for a cubic lattice is as follows:

Parameters 14

14 Parameters

a lp 5.4031 b lp 5.4031 c lp 5.4031

Parameters with names that are the same must have the same value. An exception is thrown
if the above lp parameters were defined with values that were all not the same. Another means
of constraining the three lattice parameters to the same value is by using equations with the
parameter lp defined once, or,

a lp 5.4031 b = lp; c = lp;

More general again is the use of the Get function as used in the Cubic macro:

a @ 5.4031 b = Get(a); c = Get(a);

Here the constraints are formulated without the need for a parameter name.

2.5 The local keyword

The local keyword is used for defining parameters as local to the top, xdd or phase level; local
can simplify complex INP files. The following code fragment:

xdd local a 1
xdd local a 2

has two 'a' parameters; one dependent on the first xdd and the other dependent on the second
xdd. Internally two independent parameters are generated, one for each of the 'a' parameters;
this is necessary as the parameters require separate positions in the A matrix for minimization,
correlation matrix, errors etc... In the code fragment:

local a 1 ‘ top level
xdd gauss_fwhm = a; ‘ 1st xdd
xdd gauss_fwhm = a; ‘ 2nd xdd
 local a 2 ‘ xdd level

the 1st xdd is convoluted with a Gaussian with a FWHM of 1 and the 2nd with a Gaussian with a
FWHM of 2. In other words, the 1st gauss_fwhm equation uses the ‘a’ parameter from the top
level and the second gauss_fwhm equation uses the ‘a’ parameter defined in the 2nd xdd. This
is analogous, for example, to the scoping rules found in the c programming language. The fol-
lowing is not valid as b1 is defined twice but in a different manner.

xdd local a 1 prm b1 = a;
xdd local a 2 prm b1 = a;

The following comprises 4 separate parameters and is valid:

xdd local a 1 local b1 = a;
xdd local a 2 local b1 = a;

Parameters 15

15 Parameters

2.6 Defining local parameters using $

The $ character can also be used to signal that a parameter is local. The following two lines are
similar but not entirely equivalent:

xdd … local sc 0.01 min 1e-10 scale = sc;
xdd … scale $sc 0.01

The benefit of using $ is that the default scale parameter attributes of min, max and del are
retained. The $ character can also be used with the prm keyword resulting in the parameter
being defined as local. The following two lines are equivalent:

prm $cs 100
local cs 100

Use of $ also simplifies the writing of macros when using “for { }” loops. For example, the fol-
lowing:

for strs { CS_L(@, 100) }

expands to:

for strs {
prm m67cff550_1 100 min .3 max = Min(Val 2 + .3, 10000);
lor_fwhm = 0.1 57.2957795130823 Lam / (Cos(Th) (m67cff550_1));

}

Here, there’s only one CS_L parameter, named m67cff550_1, for all strs within the loop. If on
the other hand the intention was to have one unique CS_L for each str then the following can
be used.

for strs { CS_L($cs, 100) }

which expands to:

for strs {
prm $cs 100 min .3 max = Min(Val 2 + .3, 10000);
lor_fwhm = 0.1 57.2957795130823 Lam / (Cos(Th) ($cs));

}

In the above each str has one unique cs parameter due to the use of the $ character. The prob-
lem with local parameters within the for loop, is that only one cs parameters is updated in the
OUT file with the cs parameters being lost. This situation can be remedied by using the keyword
load_save_locals.

2.7 Reporting on equation values

The value of the equation can be obtained by placing " : 0" after the equation, for example:

occ Ti+4 = 1-zr; : 0

Parameters 16

16 Parameters

After refinement, the '0' is replaced by the value of the equation. The associated error is also
reported when do_errors is defined.

2.8 Naming of equations

Equations can be given a parameter name, for example:

prm !a1 = a2 + a3/2; : 0

Here the a1 parameter represents the equation “a2 + a3/2”. If the value of the equation evalu-
ates to a constant, then a1 would be an independent parameter, otherwise a1 is treated as a
dependent parameter. If the equation evaluates to a constant, then a1 will be refined if the
character ‘!’ is not used. The following equation is valid even though it doesn’t have a parameter
name; its value and error are also reported on termination of refinement.

prm = 2 a1^2 + 3; : 0

Equations in general are not evaluated sequentially, the following:

prm a2 = 2 a1; : 0
prm a1 = 3;

gives on termination of refinement:

prm a2 = 2 a1; : 6
prm a1 = 3;

Parameters with the same name must have identical values or equations. This allows for non-
sequential evaluation of parameters. The following leads to redefinition errors:

prm a1 = 2; prm a1 = 3; ‘ redefinition error
prm b1 = 2 b3; prm b1 = b3; ‘ redefinition error

2.9 existing_prm

[existing_prm E]...

Evaluated sequentially and allows for the modification of an existing prm/local parameters,
see for example the macro K_Factor_WP in TOPAS.INC. The following:

local a 1
existing_prm a += 1;
existing_prm a /= 2;
existing_prm a = 3 (a + 1);
prm = a; : 0

gives:

prm = a; : 6.00000

Parameters 17

17 Parameters

Allowed operators for existing_prm are +=, -=, *-, /= and ^=.

2.10 ... String, Concat, To_String and To_Prm functions

String assigns a string attribute to text that would otherwise be a parameter. To_String evalu-
ates a parameter and converts the result to a string. To_Prm converts a string to a parameter
name. Together these macros provide flexibility in the creation of INP files. Concat(a, b, c, …)
concatenates strings. Concat and To_Prm arguments can be parameters or strings. If an argu-
ment is a parameter, then the value of the parameter is converted to a string. For example, the
following are all equivalent:

prm abc = 7;
prm = To_Prm(a, b, c); : 7
prm = To_Prm(a, "b", "c"); : 7
prm = To_Prm(Concat(“a”, "b", "c")); : 7
prm = To_Prm(Concat(a, "b", "c")); : 7
prm = To_Prm(String(abc)); : 7
prm = To_Prm("abc"); : 7

2.11 ... Starting a parameter with a random number

The pre-processor #out command (see section 22.1.2) can be used to start parameters at
random values, for example:

#prm a_start = Rand(5.4, 5.6);
a @ #out a_start

This is pre-processed to (as seen in TOPAS.LOG):

a @ 5.58537511

2.12 ... Using the % equation character to define a parameter name

A parameter name can be defined using a % equation as seen in the following:

Create_XDDs(3)
prm i 1
for xdds {

xdd_file = Concat("ceo2-", i, ".xdd")
…
str

site Ce1 occ Ce+4 1 beq %Concat("bCe", i); 0.2
site O1 x 0.25 y 0.25 z 0.25 occ O-2 1 beq %Concat("bO", i); 0.4
existing_prm i += 1;
…

}

The above loads three xdds ceo2-1.xdd, ceo2-2.xdd and ceo2-3.xdd. Each has a structure with
two beq parameters created using the %Concat sequence; the names created are bCe1, bO1,
bCe2, bO2, bCe3 and bO3. These can be used in equations as normal. If the bCe_ parameters
were the same as the bO_ parameters then the following could be used:

Parameters 18

18 Parameters

 site Ce1 occ Ce+4 1 beq %Concat("b1", i); 0.2
 site O1 x 0.25 y 0.25 z 0.25 occ O-2 1 beq %Concat("b1", i); 0.2

or, using To_Prm:

 site Ce1 occ Ce+4 1 beq %Concat("b1", i); 0.2
 site O1 x 0.25 y 0.25 z 0.25 occ O-2 1 beq = To_Prm(Concat("b1", i));

2.13 ... dummy and dummy_prm keywords

The dummy keyword reads a word from the input stream. dummy_prm is similar except it
reads parameter dependent text. For example, the following purple text is loaded by
dummy_prm and is ignored by the Kernel.

load xo dummy_prm I
 {
 10 = 1/Max(0.00023, 0.0001); min 10 max = Val 2; @ 100
 ...

2.14 ... Parameter errors and correlation matrix

When do_errors is defined, parameter errors and the correlation matrix are generated at the
end of refinement, see also section 4.9. Errors are appended to parameter values as follows:

a lp 5.4031_0.0012

Here the error in lp is 0.0012. The correlation matrix is identified by C_matrix_normalized; it is
appended to the OUT file if it does not already exist, or updated if it does exist.

2.15 ... Default parameter limits and LIMIT_MIN / LIMIT_MAX

Parameters with internal default min/max attributes are shown in Table 2-1. These limits avoid
invalid numerical operations and equally important they stabilize refinement by directing the
minimization process towards lower 𝜒2 values. Hard limits are avoided where possible and
instead parameter values move within a range during a refinement iteration. User defined

min/max limits override default limits. Parameters defined using prm/local should be defined
with user defined min/max limits. Functionality is often realized through the standard macros
defined in TOPAS.INC; this is an important file to view. Almost all prm’s defined within this file
have min/max limits. For example, the CS_L macro defines a crystallite size parameter with a
min/max of 0.3 and 10000 nm respectively. On termination of refinement, independent param-
eters that refined close to their limits are identified by the text "_LIMIT_MIN_#" or
"_LIMIT_MAX_#" appended to the parameter value. The '#' corresponds to the limiting value.
These warnings can be suppressed using no_LIMIT_warnings.

Table 2-1. Default parameter limits.

Parameter min max

la 1e-5 2 Val + 0.1

Parameters 19

19 Parameters

lo Max(0.01, Val-0.01) Min(100, Val+0.01)

lh, lg 0.001 5

a, b, c Max(1.5, 0.995 Val - 0.05) 1.005 Val + 0.05

al, be, ga Max(1.5, Val - 0.2) Val + 0.2

scale 1e-11

sh_Cij_prm -2 Abs(Val) - 0.1 2 Abs(Val) + 0.1

occ 0 2 Val + 1

beq Max(-10, Val-10) Min(20, Val+10)

pv_fwhm, h1, h2,
spv_h1, spv_h2

1e-6 2 Val + 20 Peak_Calcula-
tion_Step

pv_lor, spv_l1, spv_l2 0 1

m1, m2 0.75 30

d 1e-6

xo Max(X1, Val - 40 Peak_Calcula-
tion_Step)

Min(X2, Val + 40 Peak_Calcu-
lation_Step)

I 1e-11

z_matrix distance Max(0.5, Val .5) 2 Val

z_matrix angles Val – 90 Val + 90

rotate Val – 180 Val + 180

x, ta, qa, ua Val - 1/Get(a) Val + 1/Get(a)

y, tb, qb, ub Val - 1/Get(b) Val + 1/Get(b)

z, tc, qc, uc Val - 1/Get(c) Val + 1/Get(c)

u11, u22, u33 Val If(Val < 0, 2, 0.5) - 0.05 Val If(Val < 0,0.5,2) + 0.05

u12, u13, u23 Val If(Val < 0, 2, 0.5) - 0.025 Val If(Val < 0,0.5,2) + 0.025

filament_length 0.0001 2 Val + 1

sample_length, receiving_slit_length, primary_soller_angle, secondary_soller_angle

2.16 ... Reserved parameter names

Table 2-2 and Table 2-4 lists reserved parameter names that are internally updated when
needed. Table 2-3 details dependences for certain reserved parameter names. An exception
is thrown when a reserved parameter name is used for a User defined parameter name. An
example for weighting using the reserved parameter names of Yobs, Ycalc and X is as follows:

weighting = Abs(Yobs-Ycalc) / (Max(Yobs+Ycalc,1) Max(Yobs,1) Sin(X Deg / 2));

Table 2-2. Reserved parameter names.

Name Description

A_star, B_star, C_star Corresponds to the lengths of the reciprocal lattice vectors.

Parameters 20

20 Parameters

Change Returns the change in a parameter at the end of a refinement it-
eration. Change can only appear in the equations update and
stop_when.

D_spacing Corresponds to the d-spacing of phase peaks in Å.

H, K, L, M hkl and multiplicity of phase peaks.

Iter, Cycle, Cycle_Iter Returns the current iteration, the current cycle and the current
iteration within the current cycle respectively. Can be used in all
equations.

Lam Corresponds to the wavelength lo of the emission profile line
with the largest la value.

Lpa, Lpb, Lpc Corresponds to the a, b and c lattice parameters respectively.

Mi An iterator used for multiplicities. See the PO macro of
TOPAS.INC for an example of its use.

Peak_Calculation_Step Return the calculation step for phase peaks, see x_calcula-
tion_step.

QR_Removed,

QR_Num_Times_Consecutively_Small

Can be used in the quick_refine_remove equa-
tion.

R, Ri The distance between two sites R and an iterator Ri. Used in the
equation part of atomic_interaction, box_interaction and grs_in-
teraction.

Rp, Rs Primary and secondary diffractometer radius respectively.

T Corresponds to the current temperature, can be used in all equa-
tions.

Th Corresponds to the Bragg angle (in radians) of hkl peaks.

X, X1, X2 Corresponds to the measured x-axis, the start and the end of the
x-axis respectively. X is used in fit_obj's equations and the
weighting equation. X1 and X2 can be used in all xdd dependent
equation.

Xo Corresponds to the current peak position; this corresponds to
2Th degrees for x-ray data.

Val Returns the value of the corresponding parameter.

Yobs, Ycalc, SigmaYobs Observed, Calculated and estimated standard deviation in Yobs;
can be used in the weighting equation.

Table 2-3. Parameters that operate on phase peaks; dependencies are not shown.

Keywords that can be a function of H, K, L, M, Xo, Th and D_spacing.

lor_fwhm
gauss_fwhm

user_defined_convolution
th2_offset

phase_out, phase_out_X
scale_top_peak

Parameters 21

21 Parameters

hat
one_on_x_conv
exp_conv_const
circles_conv
stacked_hats_conv

scale_pks
h1, h2, m1, m2
spv_h1, spv_h2, spv_l1, spv_l2
pv_lor, pv_fwhm
pk_xo

set_top_peak_area

ymin_on_ymax
la, lo, lh, lg
modify_peak_eqn
current_peak_min_x
current_peak_max_x

Table 2-4. Phase intensity reserved parameter names.

Name Description

A01, A11, B01, B11 Used for reporting structure factor details as defined in equations
(20-5a) and (20-5b), see the macros Out_F2_Details and
Out_A01_A11_B01_B11.

Iobs_no_scale_pks

Iobs_no_scale_pks_err

Returns the observed integrated intensity of a phase peak and its
associated error without any scale_pks applied.
Iobs_no_scale_pks for phase peak p is calculated using the
Rietveld decomposition formulae, or,

1Iobs_no_scale_pks = Get(scale)
𝐼𝑃 ∑ 𝑃𝑥,𝑝𝑌𝑜𝑏𝑠,𝑥𝑥

𝑌𝑐𝑎𝑙𝑐,𝑥

where Px,p is the phase peak p calculated at the x-axis position x.
The summation x extends over the x-axis extent of the peak p. A
good fit to the observed data results in an Iobs_no_scale_pks being
approximately equal to I_no_scale_pks.

I_no_scale_pks The Integrated intensity without scale_pks equations, or,
1I_no_scale_pks = Get(scale) I

I_after_scale_pks The Integrated intensity with scale_pks equations applied.

1I_after_scale_pks = Get(scale) I Get(all_scale_pks)

returns the cumulative value of all scale_pks equations applied to
a phase.

1) I corresponds to I of hkl_Is, xo_Is and d_Is phases or (M Fobs
2) for str phases.

2.17 ... Val and Change reserved parameter names

Val is a reserved parameter name corresponding to the numeric value of a parameter during
refinement. Change is a reserved parameter name corresponding to the change of a parameter
at the end of an iteration as determined by non-linear least squares. Val can only be used in
the attribute equations min, max, del, update, stop_when and val_on_continue. Change can
only be used in the attribute equations update and stop_when. Here are some examples:

min 0.0001
max = 100;
max = 2 Val + 0.1;

Parameters 22

22 Parameters

del = Val 0.1 + 0.1;
update = Val + Rand(0,1) Change;
stop_when = Abs(Change) < 0.000001;
val_on_continue = Val + Rand(-Pi, Pi);
x @ 0.1234 update = Val + 0.1 ArcTan(Change 10); min=Val-.2; max=Val+.2;

2.17.1 The "load { }" keyword and attribute equations

"load { }" allows for loading keywords of the same type by typing the keywords once, for exam-
ple, exclude in the following input segment:

xdd exclude 20 22 exclude 32 35 exclude 45 47

can be rewritten using "load { }" as follows:

xdd load exclude { 20 22 32 35 45 47 }

In some cases, attribute equations are loaded by the parameter itself. For example, in the fol-
lowing:

prm t 0.01 val_on_continue = Rand(-Pi, Pi); min 0.4 max 0.5

the prm will load the attribute. In the following, however, load will load the min/max attributes:

load sh_Cij_prm {
 y00 !sh_c00 1
 y20 sh_c20 0.26202642 min 0 max 1
 y40 sh_c40 0.06823548
 ...
}

In this case load does not contain min/max and the parameter will load its attributes.

2.17.2 The "move_to $keyword" keyword

move_to provides a means of entering parameter attributes without having to first load the
parameter, see Keep_Atom_Within_Box macro. The site dependent ADPs_Keep_PD macro,
defines min/max limits; here's part of that macro:

move_to u12
min = -Sqrt(Get(u11) Get(u22));
max = Sqrt(Get(u11) Get(u22));

$keyword of move_to can be any object in the internal data tree.

2.18 ... Automatically saving and loading parameters - load_save_locals

[load_save_locals] Examples

TEST_EXAMPLES\LOAD-SAVE-LOCALS \LSL.INP

Parameters 23

23 Parameters

Parameters given unique names using the local keyword defined within “for {}” loops can be
automatically saved and reloaded for subsequent refinements using the load_save_locals key-
word. For example,

load_save_locals
xdd…

str… phase_name p1
str… phase_name p2
for strs {

site Ca1 x $ca1x 0.123 …
}

In the above, there are two str’s and two local x coordinate parameters defined using the $
character. However, only one value is defined and thus only one value is saved to the OUT file.
load_save_locals can be used to save both values to a file called INP_FILE.OUT_SL; notice the
OUT_SL file extension. On rerunning the INP file, a check is made for the existence of a file
called INP_FILE.SL, and if the file exists then parameter values are read from the file if. The GUI
copies INP_FILE.OUT_SL to INP_FILE.SL when parameter values are kept after refinement. Pa-
rameters are identified by the xdd file name and the phase name. If the file is a RAW file, then
the range number is also saved to INP_FILE.SL. Alternatively, the xdd dependent keyword
xdd_tag can be used to identify the parameter instead of the xdd file name/range number. This
is useful when xdd file names are the same as in the following:

XDD(..\ceo2) finish_X 50 …
XDD(..\ceo2) start_X 50 … ‘ Same file name as first xdd, need to use xdd_tag
prm i 0
for xdds {

xdd_tag = Load_Eval(i);
existing_prm i += 1;
…

}

Phase names within a particular xdd needs to be unique. The Load_Eval function evaluates the
parameter i when loading and places the value into the xdd dependent xdd_tag. A more com-
plete example, LOAD-SAVE-LOCALS \LSL.INP, defines all refined values as local and is as fol-
lows:

Parameters 24

24 Parameters

load_save_locals
do_errors
XDD(..\ceo2) finish_X 50 str phase_name p1 str phase_name p2
XDD(..\ceo2) start_X 50 str phase_name p3 str phase_name p4
prm i 0
for xdds {

xdd_tag = Load_Eval(Concat("tag", i)); ‘ Evaluate on load
existing_prm i += 1;
CuKa2(0.0001)
Radius(173)
LP_Factor(17)
Full_Axial_Model(12, 20, 12, 5.1, $sl 5)
Divergence(1)
Slit_Width(0.1)
Zero_Error($ze, 0)
bkg $bkg 0 0 0 0 0
One_on_X($onex, 0) ‘ This is a fit_obj phase which owns the its locals
for strs {

space_group FM3M
scale $sc 0.001
Cubic($a 5.4102)
site Ce1 occ Ce+4 1 beq $b1 0.5
site O1 x 0.25 y 0.25 z 0.25 occ O-2 1 beq $b1 0.5
CS_L($cs, 100)

}
}

The above is the simplest way of refining on many similar xdds.

2.19 ... Using local to assist in using “for ... {}” loops

The following parameters have global scope:

march_dollase $Name
spherical_harmonics_hkl $Name
sites_geometry $Name
sites_distance $Name
sites_angle $Name
sites_flatten $Name

The march_dollase parameter, as used in the PO macro, can be constrained to the same value
across two or more structures by giving them the same name. To have two different parame-
ters, the $ can be used to make the parameter local to the str, see PO-CONSTRAINED-CRE-
ATE.INP and PO-FOR.INP in the TEST_EXAMPLES\PO-CONSTRAINED directory, for example:

str… str…
for strs { PO($po1, 0.8, , 1 0 4) }

The $Name in spherical_harmonics_hkl is local but the spherical harmonics coefficients are
global. In the following:

 PO_Spherical_Harmonics(sh2, 8 load sh_Cij_prm {

Parameters 25

25 Parameters

 k00 !sh2_c00 1.0000
 k41 sh2_c41 0.1000
 k61 sh2_c61 -0.2000
 k62 sh2_c62 0.3000
 k81 sh2_c81 -0.4000

})

the sh2 parameter is local to the str and the coefficients k00, k41 etc... are global. This allows
the constraining of coefficients across different structures within ‘for strs’; see POSH-CON-
STRAINED-CREATE.INP and POSH-FOR.INP in the TEST_EXAMPLES\PO-CONSTRAINED directory.

2.20 ... out_dependences and out_dependences_for

[out_dependences $user_string]
[out_dependences_for $user_string $object_name]

out_dependences outputs dependences for the most previously defined prm or local. For ex-
ample, the following:

iters 1

prm d 1 prm e 1 prm f 1
prm c = e + f;
prm b = d + e;
prm a = b + c;
out_dependences a_tag
penalty = a^2;

produces on refinement termination the following in standard output:

out_dependences a_tag prm_10
Object name followed by prm name

prm_10 e
prm_10 f
prm_10 d

out_dependents_for is similar except that it names an object that is not a parameter, for ex-
ample, the following lists independent refined parameters associated with the most recently
defined rigid body:

rigid ... out_dependents_for tag_1 rigid

Many $object_name’s can be tagged, these include x, y, z, occ, beq, u11, u22, u33, u12, u13,
u23, a, b, c, al, be, ga, etc. In addition, non-parameters can be tagged, these include site, rigid,
sites_restrain, lat_prms, gauss_conv, lor_conv, all_scale_pks, th2_offset_eqn etc.

Parameters 26

26 Parameters

2.21 ... The num_runs keyword and preprocessor specifics

[num_runs #]
[out_file = $E]
[system_before_save_OUT { $system_commands }]…
[system_after_save_OUT { $system_commands }]…

Typically, an INP file is run once; num_runs change’s this behaviour where the refinement is
restarted and performed again until it is performed num_runs times. Information from one run
to the next can be exchanged via the out keyword and the #include directive. The INP file is
read each Run but not updated when both num_runs > 1 and out_file is empty. Equations could
simplify to a constant during a run, or indeed, the Constant function can be used such that a
parameter is not refined. From TA.EXE and Launch mode the Rwp graphical plot is appended
such that it looks like continue_after_convergence. The following INP segment:

num_runs 10
yobs_eqn aac##Run_Number##.xy = Gauss(Run_Number, 1 + Run_Number);

min -2 max 20 del 0.01

produces on execution the following:

out_file determines the name of the output file updated on refinement termination. The OUT
file comprises the INP file but with parameter values updated. out_file defaults to the name of
the INP file but with an OUT extension. If num_runs is greater than 1, and out_file is not defined,
then no OUT file is saved. This can speed up refinements when an OUT file is not needed.
out_file is an equation that needs to evaluate to a string; here are some examples:

out_file aac.out ‘ This will throw an exception
out_file = aac.out; ‘ This will throw an exception
out_file = "aac.out";
out_file = String(aac.out);
out_file = If(Get(r_wp) < 10, "aac.out", "");
out_file = If(Get(r_wp) < 10, Concat(String(INP_File), ".OUT"), "");

Parameters 27

27 Parameters

The standard macro Save_Best uses out_file as follows:

macro Save_Best {
 #if (Run_Number == 0)
 prm Best_Rwp_ = 9999;
 #else
 prm Best_Rwp_ = #include Best_Rwp_.txt;
 #endif
 out Best_Rwp_.txt Out(If(Get(r_wp) < Best_Rwp_, Get(r_wp), Best_Rwp_))
 out_file = If(Get(r_wp) < Best_Rwp_, Concat(String(INP_File),".OUT"), "");

}

system_before_save_OUT executes system commands defined in $system_commands string
just before the *.OUT file is updated. The system commands are executed from the directory
of the INP file. $system_commands can comprise any operating system commands. The
macro Backup_INP uses system_before_save_OUT; it is defined in TOPAS.INC as:

macro Backup_INP {
 system_before_save_OUT {
 copy INP_File##.inp INP_File##.backup
 }
}

system_after_save_OUT executes the system commands defined in $system_commands
string just after the *.OUT file is updated.

2.21.1 Reserved macro names

The following are internally generated macros that can be used in INP files.

ROOT : Returns the root directory of the program.
INP_File : Returns current INP file name without a path or extension.
Run_Number : Returns the current run number.
File_Can_Open($file) : Returns 1 if $file can be opened or 0 of it can't be opened.

Running an INP file called AAC.INP from TC.EXE where AAC.INP comprises:

ROOT INP_File Run_Number File_Can_Open(aac.xy)

and AAC.XY exists will produce in TC.LOG the following:

c:\topas-6\ aac 0 1

2.21.2 The #list directive – creating arrays of macros

#list creates arrays of macros than can be expanded depending on the value of an implied ar-
gument. For example, the following creates three arrays of macros called File_Name, Temper-
ature and Time.

Parameters 28

28 Parameters

#list File_Name & Temperature(, & la) Time {
 File0001.xy 300 0.0
 { File0002 .xy } 320 10.2 ‘ Line with curly brackets
 File0003.xy 340 21.0
 File0017.xy { 360 + la } 28.9 ‘ Line with curly brackets
 File0107.xy 380 101.2 }

The actual macro invoked depends on the first argument of the macro. The first argument is
implied in the case of File_Name and Time. In the case of Temperature, the first argument is
the implied argument. When the macro is invoked the first argument is a #type equation that
must equate to an integer; here’s an example for File_Name:

xdd File_Name(Run_Number)

Curly brackets, as seen in the above #list, can be used as delimiters; the following:

File_Name(1)
Temperature(1,)
Temperature(3, Get(la) + 0.01)

produces on expansion:

File0002 .xy
(320)
(360 + (Get(la) + 0.01))

Using curly brackets as delimiters allow for curly brackets themselves to be part of the macro
body.

2.21.3 Getting the number of items in a #list using #list_n

During the pre-processor phase of loading INP files, #list_n returns the number of items in a
#list; for example:

#list Files { file1.xdd file2.xdd file3.xdd }
Create_XDDs(#list_n Files)

2.21.4 The File_Variable and File_Variables macro

The File_Variable macro can be used to run a series of runs with initial parameters values
changing in a user defined manner between runs; the macro is defined in TOPAS.INC as fol-
lows:

Parameters 29

29 Parameters

macro File_Variable(c, x_start, dx) {
 #if (Run_Number == 0)
 #prm c = x_start;
 #else
 #prm c = #include c##.txt;
 #endif
 #prm c##_next = c + dx;
 out c##.txt Out(#out c##_next)
}

Using File_Variable as follows:

File_Variable(occ, 0, 0.1)

will generate a file called OCC.TXT for each Run with values ranging from 0.1 to 1 in steps of
0.1. A #prm is defined each run with the corresponding values. #out can be used to place the
#prm in the INP file, for example, the following:

iters 0
num_runs 11
File_Variable(occ, 0, 0.1)
macro Out_File { Occ##Run_Number##.Out }
out_file
system_after_save_OUT {
 #if (Run_Number)
 type Out_File >> aac.out
 #else
 type Out_File > aac.out
 #endif
}
yobs_eqn !aac.xy = 1;
 min 10 max 50 del 0.01
 CuKa1(0.0001)
 Out_X_Ycalc(occ##Run_Number##.xy)
 STR(F_M_3_M)
 scale @ 0.0014503208
 Cubic(5.41)
 site Ce1 occ Ce+4 = #out occ; beq 0.2028
 site O1 x 0.25 y 0.25 z 0.25 occ O-2 1 beq 0.5959

results in eleven *.XY files each generated with a different occupancy for the Ce1 site as de-
termined by the occ #prm. The names of the files would be OCC0.XY to OCC10.XY. Additionally,
using system_after_save_OUT the file AAC.OUT will contain a concatenation of all the *.OUT
files. To iterate over two variables, pa and pb say, then the File_Variables macro, defined in
TOPAS.INC as:

Parameters 30

30 Parameters

macro File_Variables(a, a1, a2, da, b, b1, b2, db) {
 #if (Run_Number == 0)
 #prm a = a1;
 #prm b = b1;
 #else
 #prm a = #include a##.txt;
 #prm b = #include b##.txt;
 #endif
 #prm a##_next = If(b >= b2, a + da, a);
 #prm b##_next = If(b >= b2, b1, b + db);
 out a##.txt Out(#out a##_next)
 out b##.txt Out(#out b##_next)
}

can be used as follows:

iters 0
num_runs 36
File_Variables(pa, 0, 1, 0.2, pb, 0, 1, 0.2)
prm !pa = #out pa; prm !pb = #out pb;
out papb.txt append
 out_record out_eqn = pa; out_fmt "(%.1f, "
 out_record out_eqn = pb; out_fmt "%.1f) "
 #if (pb == 1) Out_String("\n") #endif

On running the above the PAPB.TXT File contains:

(0.0, 0.0) (0.0, 0.2) (0.0, 0.4) (0.0, 0.6) (0.0, 0.8) (0.0, 1.0)
(0.2, 0.0) (0.2, 0.2) (0.2, 0.4) (0.2, 0.6) (0.2, 0.8) (0.2, 1.0)
(0.4, 0.0) (0.4, 0.2) (0.4, 0.4) (0.4, 0.6) (0.4, 0.8) (0.4, 1.0)
(0.6, 0.0) (0.6, 0.2) (0.6, 0.4) (0.6, 0.6) (0.6, 0.8) (0.6, 1.0)
(0.8, 0.0) (0.8, 0.2) (0.8, 0.4) (0.8, 0.6) (0.8, 0.8) (0.8, 1.0)
(1.0, 0.0) (1.0, 0.2) (1.0, 0.4) (1.0, 0.6) (1.0, 0.8) (1.0, 1.0)

2.22 ... Ingesting files into an INP file using #ingest

[#ingest $file]

#ingest is a pre-processor command than copies a file into an INP file, for example:

xdd…
 str…

#ingest common_str.txt

The output file will contain the ingested text with refined parameters updated. In other words,
ingested files are treated as part of the original INP file. Ingested files can be nested. $file can
be a function of macros.

2.23 ... #external_INP - using external INP files

[#external_INP $file] Examples

TEST_EXAMPLES\EXTERNAL_INP\EXT_INP.INP

Parameters 31

31 Parameters

#external_INP is a pre-processor command than includes the file $file as part of the refinement
without ingesting the text into the INP file. On refinement end, the extension of $file is changed
to OUT and the contents of this OUT file updated with refined parameter values. Example usage
is as follows:

xdd…
 #external_INP instrument.inp
 #external_INP str.inp

#external_INP cab ne nested (#external_INP file can contain #external_INP commands). $file
can be a function of macros. When running Launch mode from the GUI (TA.EXE), all #exter-
nal_INP OUT files are renamed to INPs if the question on refinement termination is answered
in the affirmative.

Equation Operators and Functions 32

32 Equation Operators and Functions

3. .. EQUATION OPERATORS AND FUNCTIONS

Table 3-1. Operators and functions supported in equations (case sensitive). In addition,
equations can be a function of User defined parameter names.

Arithmetic

+, -, *, / Plus, Minus, Multiply, Divide. Multiply is optional, x*y = x y

^ x^y, Calculates x to the power of y. Precedence:
x^y^z = (x^y)^z, x^y*z = (x^y)*z, x^y/z = (x^y)/z

Conditional

a == b Returns 1 if a = b

a < b Returns 1 if a < b

a <= b Returns 1 if a ≤ b

a > b Returns 1 if a > b

a >= b Returns 1 if a ≥ b

And(a, b, …) Returns 1 if all arguments are non-zero

Or(a, b, …) Returns 1 if one or more argument is non-zero

Mathematical

ArcCos(x) Returns the arc cos of x (-1 <= x <= 1)

ArcSin(x) Returns the arc sine of x (-1 <= x <= 1)

ArcTan(x) Returns the arc tangent of x

ArcTan2(y,x) Returns arc tangent of y/x

Cos(x) Returns the cosine of x

Cosh(x) Hyperbolic cosine

Erf_Approx(x) Error function

Erfc_Approx Complementary error function

Exp(x) Returns the exponential e to the x

Gamma_Approx(x) Return the Gamma of x

Gamma_Ln_Approx(x) Returns the natural logarithm of the gamma function

Gamma_P(a, x) Returns the incomplete Gamma function P(a, x)

Gamma_Q(a, x) Returns the incomplete Gamma function Q(a, x) = 1-P(a,x)

Ln(x) Returns the natural logarithm of x

Sin(x) Returns the sine of x

Sinh(x) Hyperbolic sine

Sqrt(x) Returns the positive square root

Tan(x) Returns the tangent of x

Tanh(x) Hyperbolic tangent

Special

For(Mi = 0, Mi < M, Mi = Mi+1 , …)

Get($keyword) Gets the parameter associated with $keyword

Equation Operators and Functions 33

33 Equation Operators and Functions

If(conditional_test, return true_eqn, return false_eqn)

Sum(returns summation_eqn, initializer, conditional_test, increment_eqn)

Miscellaneous

Abs(x) Returns the absolute value of x

Break Can be used to terminate loops implied by the equations
atomic_interaction, box_interaction and grs_interaction.

Break_Cycle Can be used to terminate a refinement cycle. For example, a re-
finement cycle can be terminated depending on the value of a
penalty as follows:

atomic_interaction ai = (R - 1.3)^2;
penalty = If(ai > 5, Break_Cycle, 0);

Concat(a, b, c, …) Concatenates strings; the arguments can be parameters or
strings. If an argument, then the value of the parameter is con-
verted to a string.

Error(p) Returns associated error of parameter p.

a = Load_Eval(b) Evaluates b on loading and places the result in a.

Max(a,b,c …) Returns the max of all arguments.

Min(a,b,c …) Returns the min of all arguments.

Mod(x, y) Returns the modulus of x/y. Mod(x, 0) returns 0.

Obj_There(a) Returns 1 if object ‘a’ exists within the current scope.

Prm_There(a) Returns 1 if prm/local ‘a’ exists.

Rand(a, b) Returns a uniform deviate random number between a & b.

Rand_Normal(mean,std) Returns a random number with a normal distribution with a
mean of ‘mean’ and standard deviation of ‘std’.

Round(x) Examples: prm = Round(.1); : 0.00000
prm = Round(.5); : 0.00000
prm = Round(1.6); : 2.00000
prm = Round(-.1); : 0.00000
prm = Round(-.5); : 0.00000
prm = Round(-1.6); : -2.00000

To_Prm(a, b, c, …) Concatenates the arguments to form a parameter name and re-
turns the corresponding parameter. If an argument is a parame-
ter name, then the value of the parameter is converted to a
string.

To_String(a) Evaluates the parameter ‘a’ and converts the result to a string.

Sign(x) Returns the sign of x, or zero if x = 0

In addition, the following functions are implemented:

AB_Cyl_Corr(R), AL_Cyl_Corr(R)

Returns AB and AL for cylindrical sample intensity correction (Sabine et al., 1998). These
functions are used in the macros Cylindrical_I_Correction and

Equation Operators and Functions 34

34 Equation Operators and Functions

Cylindrical_2Th_Correction. Example CYLCORR.INP demonstrates usage. For a more ac-
curate alternative to the Sabine corrections see the capillary_diameter_mm convolution.

Bkg_at(x)

Returns the value of the Chubychev polynomial, defined by bkg, at the value x.

Constant(expression)

Evaluates ‘expression’ once and then replaces ‘Constant(expression)’ with the corre-
sponding numeric value. Very useful when the expected change in a parameter insignifi-
cantly affects the value of a dependent equation, see for example the TOF_Exponential
macro.

Ln_Normal_x_at_CD(u, s, v, toll)

Returns x value of a Ln normal distribution such that x is at the Cumulative Distribution
value of ‘cd’ where u and s are the mean and standard deviation of the variable’s natural
logarithm. x is calculated with a tolerance in 'cd' of 'toll'; see TEST_EXAMPLES\WPPM\LN-
NORMAL-1.INP.

PV_Lor_from_GL(gauss_FWHM, lorentzian_FWHM)

Returns the Lorentzian contribution of a pseudo-Voigt approximation to the Voigt where
gauss_FWHM and lorentzian_FWHM are the FWHMs of the Gaussian and Lorentzian con-
voluted to form the Voigt.

Sites_Geometry_Distance($Name)
Sites_Geometry_Angle($Name)
Sites_Geometry_Dihedral_Angle($Name)

Value_at_X(object, x) : Returns the value of object at X = x. object could be a parameter or a
user_y object. For example, to ensure background is close to the high angle end of a pat-
tern during PDF-generation, the following could be implemented:

user_y u capillary.xy
fit_obj = (p0 + p1 X) u;
bkg @ 0 0 0
penalty = 1000 (Bkg_at(X2) + (p0 + p1 X2) Value_at_X(u, X2) - Yobs_at(X2))^2;

Voigt_Integral_Breadth_GL(gauss_FWHM, lorentzian_FWHM)

Returns the integral breadth resulting from the convolution of a Gaussian with a Lorentzian
with FWHMs of gauss_FWHM and Lorentzian_FWHM respectively.

Voigt_FWHM_GL(gauss_FWHM, lorentzian_FWHM)

Returns the Voigt FWHM resulting from the convolution of a Gaussian with a Lorentzian
with FWHMs of gauss_FWHM and Lorentzian_FWHM respectively.

Yobs_Avg(x1, x2)

Equation Operators and Functions 35

35 Equation Operators and Functions

Returns the average value of Yobs between x1 and x2. x1 and x2 is first set to the closest
x-axis data point.

Ycalc_at(x)

Returns the value of Ycalc at x. Zero is returned if x  X1 or x  X2.

Yobs_at(#x)

Returns the Yobs value at the x-axis position #x; can be used in all sub xdd dependent equa-
tions.

Yobs_dx_at(#x):

Returns the step size of the observed data at the x-axis position #x; can be used in all sub
xdd dependent equations. If the step size in the x-axis is equidistant then Yobs_dx_at is
converted to a constant corresponding to the step size in the data.

Yobs_Min(x1, x2)

Returns the minimum value of Yobs between x1 and x2.

3.1 'If' and nested 'If' statements

'If' statements can be used in parameter equations, for example:

prm a 0.1 prm b 0.1
lor_fwhm = If(Mod(H, 2) == 0, a Tan(Th), b Tan(Th));

'If' can also be nested:

prm cs 200 update = If(Val < 10, 10, If(Val > 10000, 10000, Val));

For those who are familiar with if/else statements, the IF THEN ELSE ENDIF macros, as defined
in TOPAS.INC, can be used:

IF a > b THEN
a ‘ return expression value

ELSE
b ‘ return expression value

ENDIF

Min and Max functions can be used in equations, for example:

prm a 0.1 prm b 0.3
th2_offset = Min(Max(a, b, -0.2), 0.2);

3.2 Floating point exceptions

An exception is thrown when an invalid floating-point operation is encountered, i.e.

Equation Operators and Functions 36

36 Equation Operators and Functions

Divide by zero

Sqrt(x) for x < 0

Ln(x) for x ≤ 0

ArcCos(x) for x < -1 or x > 1

Exp(x) produces an overflow for x ~ 700

(-x)^y for x > 0 and y not an integer

Tan(x) evaluates to Infinity for x = n Pi/2, Abs(n) = 1, 3, 5, …

min/max equations, Min/Max functions or ‘If’ functions can be used to avoid invalid floating-
point operations. Equations can also be manipulated to yield valid floating-point operations,
for example, Exp(-1000) can be used in place of 1/Exp(1000).

The Minimization Routines 37

37 The Minimization Routines

4. .. THE MINIMIZATION ROUTINES

TMinimization
[line_min] [use_extrapolation] [no_normal_equations] [use_LU]
[approximate_A]

[A_matrix_memory_allowed_in_Mbytes !E]
[A_matrix_elements_tollerance !E]
[A_matrix_report_on]

[approximate_A_check_for_must_be_zero #n]
[chi2 !E]
[chi2_convergence_criteria !E]
[continue_after_convergence]
[bootstrap_errors !Ecycles]

[fraction_of_yobs_to_resample !E]
[determine_values_from_samples]
[resample_from_current_ycalc]

[do_errors]
[do_errors_include_restraints]
[do_errors_include_penalties]
[only_penalties]
[percent_zeros_before_sparse_A #]
[penalty !E]...
[penalties_weighting_K1 !E]
[pen_weight !E]
[quick_refine !E [quick_refine_remove !E]]
[randomize_on_errors]
[restraint !E]
[save_best_chi2]
[use_LU_for_errors]

Get(number_independent_parameters)

The Newton-Raphson non-linear least squares method is used by default with the Marquardt
method (1963) included for stability. The objective function 𝜒2 is written as:

𝜒2 = 𝜒0
2 + 𝜒𝑃

2 + 𝜒𝑅
2 (4-1)

𝑤ℎ𝑒𝑟𝑒 𝜒0
2 = 𝐾 ∑ 𝑤𝑚

𝑀

𝑚=1

 (𝑌𝑜,𝑚 − 𝑌𝑐,𝑚)
2

 (4-2)

𝜒𝑃
2 = 𝐾𝐾1𝐾𝑃 ∑ 𝑃𝑝

𝑁𝑝

𝑝=1

 𝜒𝑅
2 = 𝐾𝐾1𝐾𝑅 ∑ 𝑅𝑟

2

𝑁𝑅

𝑟=1

𝐾 =

1

∑ 𝑤𝑚𝑌𝑜,𝑚
2𝑀

𝑚=1

 (4-3)

Yo,m and Yc,m are the observed and calculated data respectively at data point m, M the number
of data points, wm the weighting given to data point m which for counting statistics is given by

The Minimization Routines 38

38 The Minimization Routines

wm=1/(Yo,m)2 where (Yo,m) is the error in Yo,m, Pp are penalty functions, defined using penalty,

and Np the number of penalty functions. Rr are restraints, defined using restraint, and NR the
number of restraints. KP and KR are weights applied to the penalty functions and restraints re-
spectively. K1 corresponds to the user defined penalties_weighting_K1 (default value of 1), typ-
ical values range from 0.1 to 2. Penalty functions and Restraints are minimized when observed
data Yo is absent; see example ONLYPENA.INP.

The matrix equations are generated by the usual expansion of Yc,m to a first order Taylor series
around the parameter vector p. The size of p corresponds to the number of independent pa-
rameters N. The penalty functions are expanded to a second order Taylor series around the
parameter vector p. The restraints are expanded to a first order Taylor series around the pa-
rameter vector p. The resulting matrix equations are:

A p = Y (4-4)

where A = A0 + AP + AR

and Y = Y0 + YP + YR

𝐴𝑖𝑗 = ∑ 𝑤𝑚

𝜕𝑌𝑐,𝑚

𝜕𝑝𝑖

𝜕𝑌𝑐,𝑚

𝜕𝑝𝑗

𝑀

𝑚=1

𝐴𝑃,𝑖𝑗 =
𝐾𝑃

2
∑

𝜕2𝑃𝑝

𝜕𝑝𝑖𝜕𝑝𝑗

𝑁𝑃

𝑝=1

𝐴𝑅,𝑖𝑗 = 𝐾𝑅 ∑
𝜕𝑅𝑟,𝑖

𝜕𝑝𝑖

𝜕𝑅𝑟,𝑗

𝜕𝑝𝑗

𝑁𝑅

𝑟=1

𝑌𝑜,𝑖 = ∑ 𝑤𝑚

𝑀

𝑚=1

(𝑌𝑜,𝑚 − 𝑌𝑐,𝑚)
𝜕𝑌𝑐,𝑚

𝜕𝑝𝑖

𝑌𝑃,𝑖 = −
𝐾𝑃

2
∑

𝜕𝑃𝑝

𝜕𝑝𝑖

𝑁𝑃

𝑝=1

𝑌𝑅,𝑖 = −𝐾𝑅 ∑ 𝑅𝑟

𝜕𝑅𝑟

𝜕𝑝𝑖

𝑁𝑅

𝑟=1

(4-5)

The Taylor coefficients p corresponds to changes in the parameters p. Eq. (4-4) represents a
linear set of equations in p that are solved for each iteration of refinement. Off diagonal terms
in AP are not calculated and are instead set to zero. KR and KP are both set to 1 in the absence
of 𝜒0

2. When 𝜒0
2 does exist then KP is used to give approximate equal weights to the sum of the

inverse error terms in the parameters, 0(pi)2 and P(pi)2, calculated from 𝜒𝑃
2 and 𝜒0

2 respec-
tively. Neglecting the off-diagonal terms results in P(pi)2=1/A0,ii and P(pi)2=1/AP,ii; however, to
avoid numerical stabilities KP is written as shown in Eq. (4-6).

𝐾𝑃 = ∑ 𝐼𝑓 (𝑌𝑃,𝑘 < 10−14𝐴0,𝑘𝑘, 0,
1.05𝐴0,𝑘𝑘

(𝐴𝑃,𝑘 + 𝐴0,𝑘𝑘𝑀𝑖𝑛(𝑌𝑃,𝑘𝑘 𝑌𝑜,𝑘𝑘⁄ , 0.05))
)

𝑁𝑃

𝑘=1

(4-6)

k corresponds to independent parameters that are a function of 𝜒𝑃
2. Similarly, for KR we have:

𝐾𝑅 = ∑ 𝐼𝑓 (𝑌𝑅,𝑘 < 10−14𝐴0,𝑘𝑘, 0,
1.05𝐴0,𝑘𝑘

(𝐴𝑅,𝑘 + 𝐴0,𝑘𝑘𝑀𝑖𝑛(𝑌𝑅,𝑘𝑘 𝑌𝑜,𝑘𝑘⁄ , 0.05))
)

𝑁𝑅

𝑘=1

(4-7)

The Minimization Routines 39

39 The Minimization Routines

KR and KP can be modified using pen_weight and the macro Pen_Wt. Pen_Wt calls the user de-
fined macro Write_Pen_Wt; a definition that mimics the default is:

macro Write_Pen_Wt(Aii, Ai, Pii, Pi) {
pen_weight = If(Pii < 1e-14 Aii,0,1.05 Aii/(Pii+Aii Min(Pi/Ai, 0.05)));

}

Aii and Ai corresponds to A0,ii and Y0,i respectively. For KP then Pii and Pi corresponds to AP,ii and
YP,i. For KR then Pii and Pi corresponds to AR,ii and YP,i. ShelX type restraints can be formulated as
follows:

pen_weight = 1;
penalties_weighting_K1 = (Get(r_wp) / Get(r_exp))^2;
do_errors_include_restraints
save_best_chi2
restraint = Sqrt(w) (yt - y);

where Sqrt(w) is simply the square root of the restraint weight used by ShelX.

4.1 The Conjugate Gradient Solution method

The Bounds Constrained Conjugate Gradient (BCCG) method (Coelho, 2005) incorporating

min/max limits is used for solving the normal equations; it assists in convergence of the non-
linear least squares process. min/max limits are dynamically recalculated and used to during
the solution process. For example, to constrain site occupancies on three sites to full occu-
pancy with three atomic species, each with occupancy of 1, then the following could be de-
fined (see TEST_EXAMPLES\OCC-CONSTRAIN.INP):

site Ni x 0.11 y 0.22 z 0.33 occ Ni ni1 0.20000 min 0 max 1
 occ Zr zr1 0.30000 min 0 max = 1 - ni1;
 occ Ca ca1 = 1 - ni1 - zr1; : 0.50000

site Zr x 0.21 y 0.32 z 0.43 occ Ni ni2 0.40000 min 0 max = 1 - ni1;

 occ Zr zr2 0.50000 min 0 max = 1 - ni2;
 occ Ca ca2 = 1 - ni2 - zr2; : 0.10000

site Ca x 0.31 y 0.42 z 0.53 occ Ni ni3 = 1 - ni1 - ni2; : 0.40000

 occ Zr zr3 = 1 - zr1 - zr2; : 0.20000
 occ Ca ca3 = 1 - ca1 - ca2; : 0.40000

‘ Occupancy on sites add up to 1
prm = ni1 + zr1 + ca1; : 1.00000
prm = ni2 + zr2 + ca2; : 1.00000
prm = ni3 + zr3 + ca3; : 1.00000

‘ Individual species add up to 1
prm = ni1 + ni2 + ni3; : 1.00000
prm = zr1 + zr2 + zr3; : 1.00000
prm = ca1 + ca2 + ca3; : 1.00000

If the A matrix is not sparse then use_LU can be used to invoke LU-decomposition instead of
the BCCG routine. LU-decomposition does not use min/max limits during the solution process
and in addition it requires the full A matrix which, for problems with thousands of parameters,

The Minimization Routines 40

40 The Minimization Routines

may be memory intensive. LU-decomposition can also be slow when the number of parame-
ters is greater than about one thousand. percent_zeros_before_sparse_A defines the percent-
age of the A matrix that can be zero before sparse matrix methods are invoked. The default
value is 60%.

4.2 The Marquardt method

The Marquardt (1963) method applies a scaling factor , called the Marquardt constant, to the
diagonal elements of the A matrix when the solution to the normal equations of Eq. (5-4) fails
to reduce 𝜒2, or,

Aii,scaled = Aii (1 + )

After applying the Marquardt constant, the normal equations are again solved and 𝜒2 recalcu-
lated. If 𝜒2 increases, then  is increased and the scaling process repeated. Repeated failure
results in a very large Marquardt constant; taken to the limit the off-diagonal terms can be ig-
nored and the solution to the normal equations can be approximated as:

pi = Yi / (Aii (1 + )) (4-8)

Improvements to the determination of the Levenberg-Marquardt constant (cCoelho, 2018) has
been made. This is especially the case for objective functions that are far from quadratic and
when the BFGS method is used.

4.3 Approximating the A matrix - the BFGS method

approximate_A can be used to approximate the A matrix, Eq. (4-4), without the need to calcu-
late the A matrix dot products; the approximation is based on the BFGS method (Broyden,
1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). Approximating A is useful when the cal-
culation of the A matrix dot products is proving expensive. approximate_A may also improve
convergence for the case where penalties dominate the refinement. approximate_A cannot be
used with line_min or use_extrapolation. The single crystal refinement examples of AE14-AP-
PROX-A.INP and AE1-APPROX-A.INP are cases where the use of approximate_A achieves con-
vergence in less time than with the fully calculated A matrix. When using approximate_A, the

A matrix can be made sparse by defining A_matrix_memory_allowed_in_Mbytes and/or A_ma-
trix_elements_tollerance. This allows for refinements with large numbers of independent pa-
rameters. A_matrix_memory_allowed_in_Mbytes limits the memory used by the A matrix.
A_matrix_elements_tollerance #tol removes elements in the A matrix with values less than
#tol. The comparison is made againts normalized elements of A such that Aii=1. Typical values
for #tol range from 0.0001 to 0.01. A_matrix_memory_allowed_in_Mbytes and A_matrix_ele-
ments_tollerance can be used simultanuously. A_matrix_report_on displays the percentage
of non-zero elements in the A matrix.

4.4 Setting A-matrix elements that must-be-zero to zero

[approximate_A_check_for_must_be_zero #n]

Example

TEST_EXAMPLES\XRD-CT\XRD-CT-1.INP

The Minimization Routines 41

41 The Minimization Routines

In using approximate_A, A-matrix elements that must-be-zero can still comprise non-zero val-
ues during the BFGS method. Aij elements that must-be-zero include cases where parameter
pi and parameter pj are from different xdd patterns. The keyword approxi-
mate_A_check_for_must_be_zero test for zero A matrix elements and sets them to zero. This
improves convergence in large problems comprising 1000s of xdds. Importantly, sparse matrix
methods are invoked and only non-zero A-matrix elements are stored reducing memory usage.
In cases where there are 1000s of xdds, use of approximate_A_check_for_must_be_zero often
negates the need for A_matrix_memory_allowed_in_Mbytes.

Checking for zero A-matrix elements requires a modest amount of computational effort; to
minimize this, the check is only performed up to the nth iteration of a refinement cycle where n
is the number defined after the approximate_A_check_for_must_be_zero keyword. After the
nth iteration, Aij elements that must-be-zero are set to those that were zero at the nth iteration.
Example use is as follows:

approximate_A_check_must_be_zero = Cycle_Iter < 4;

4.5 Line minimization and Parameter extrapolation

Line minimization, also known as the steepest decent method, is invoked using line_min. It
uses a direction in parameter space given by pi=Yi/Aii to minimize on 𝜒2(𝑝 + 𝑝) by adjust-
ing . Parameter Extrapolation, use_extrapolation, uses parabolic extrapolation of the param-
eters as a function of iteration, or,  is adjusted such that 𝜒2(𝐚𝟐 + 𝐛 + 𝐜) is minimized
where for a particular parameter pi at iteration k we have ai=(y1-2y2+y3)/2, bi=(y3-y1)/2 and ci=y2
where y1=(pi,k-5+pi,k-4)/2, y2=(pi,k-3+pi,k-2)/2 and y3=(pi,k-1+pi,k-0)/2. Parameter Extrapolation encom-
passes the last six sets of parameter values. In cases where both exists then Parameter Extrap-
olation reduces possible oscillatory behaviour in 𝜒0

2 and 𝜒𝑃
2. Parameter extrapolation when

used with Line Minimization can increase the rate of convergence when refining on penalties
only. Line minimization and Parameter Extrapolation have relatively small memory footprints
and thus can be useful when the A matrix consumes too much memory. Alternatively, approx-
imate_A can be used. Line minimization with the full A matrix calculation (approximate_A not
defined) can increase the rate of convergence on problems like Pawley refinement. no_nor-
mal_equations prevents the use of normal equations in the minimization routine.

4.6 Restraints and Penalties

penalty defines a penalty function that can be a function of parameters. Penalties, such as
bond-length restraints, are useful for stabilizing refinements. Example HOCK.INP uses penal-
ties to minimize on the Hock and Schittkowski problem number 65:

prm x1 1 min -4.5 max 4.5 val_on_continue = Rand(-4.5, 4.5); del 0.01
prm x2 1 min -4.5 max 4.5 val_on_continue = Rand(-4.5, 4.5); del 0.01
prm x3 1 min -5.0 max 5.0 val_on_continue = Rand(-5.0, 5.0); del 0.01

‘ Hock and Schittkowski problem number 65 function
penalty = (x1 - x2)^2 + (1/9) (x1 + x2 - 10)^2 + (x3 - 5)^2; : 0

prm contraint_1 = x1^2 + x2^2 + x3^2;
penalty = If(contraint_1 < 48, 0, (contraint_1 - 48)^2); : 0

The Minimization Routines 42

42 The Minimization Routines

To apply a penalty function to lattice and crystallite size parameters, which are expected to be
5.41011 Å and 200 nm respectively, the following can be used:

str
Cubic(lp_ceo2 5.41011)
CS_L(cs_l, 200)
penalty = (lp_ceo2 - 5.41011)^2;
penalty = (cs_l - 200)^2;

penalties_weighting_K1 defines the weighting K1 in Eq. (4-3); the default value is 1. A restraint
can be reformulated into a penalty by squaring the restraint, for example:

restraint = a (x - b);

This is equivalent to:

penalty = a^2 (x - b)^2;

In the case of the restraint, the off-diagonal terms AR,ij are calculated when approximate_A (the
BFGS method) is not defined. In the case of the penalty the off-diagonal terms AP,ij is set to
zero. Restraints often converge in less iterations than equivalent penalties due to the use of
the off-diagonal terms (compare ROSENBROCK-10.INP with ROSENBROCK-10-RESTRAINT.INP).
However, the time to convergence may be greater due to calculation of the off-diagonal re-
straint terms in the A matrix. Penalties are useful for functions that are not to be squared; these
include negative functions such as the GRS series atomic interaction (see ALVO4-GRS-
AUTO.INP). For efficiency the AR matrix is treated as a sparse matrix which is combined with A0
(if it exists) where A0 could be either sparse or dense. When approximate_A is used then the
off-diagonal elements of A0, AP, and AR are not calculated; instead, they are approximated by
the BFGS method. approximate_A when used with penalties and restraints, effectively, means
that the restraints are treated as penalties. The following two cases will have similar but not
identical convergence.

‘ Case 1

approximate_A
prm p1 1 prm r1 1
penalty !P1 = 5^2 (p1 - 7)^2;
penalty !P2 = 6^2 (p1 - 8)^2;
restraint !R1 = 7 (r1 - 9);
restraint !R2 = 8 (r1 - 10);

‘ Case 2

prm p1 1 prm r1 1
penalty !P1 = 5^2 (p1 - 7)^2;
penalty !P2 = 6^2 (p1 - 8)^2;
penalty !P3 = 7^2 (r1 - 9)^2;
penalty !P4 = 8^2 (r1 - 10)^2;

Diagonal elements of the A matrix

AP,p1p1 = (½) 2(P1+P2)/  p12

AR,r1r1 = ( R1/ r1)2 + ( R2/ r1)2

AP,p1p1 = (½) 2(P1+P2)/  p12

AP,r1r1 = (½)  2(R12+R22)/  r12

The difference in behaviour between penalties and restraints can be seen by comparing ROS-
ENBROCK-10.INP to ROSENBROCK-10-RESTRAINT.INP. In 500,000 iterations, the former results
in 71 iterations on average to convergence and the latter 47 iterations on average to conver-
gence. The restraints case converges faster as AR,ij elements are calculated. Approximating
AR,ij, by defining approximate_A in ROSENBROCK-10-RESTRAINT.INP, results in fastest

The Minimization Routines 43

43 The Minimization Routines

convergence, time wise, with 71 iterations on average to convergence. Many penalties how-
ever cannot be formulated as a restraint, RASTRGIN.INP for example, and in these cases, pen-
alties are necessary.

4.7 Minimizing on penalties only

When there are no observed data or when only_penalties is defined then by default the BFGS
method is used, see examples ROSENBROCK-10.INP and HOCK.INP; this behaviour can be
overridden with the use of line_min. For ‘penalties only’ the BFGS method typically converges
faster than line_min/use_extrapolation.

4.8 Saved refined values and save_best_chi2

Values saved on termination of refinement are determined as follows:

• If continue_after_convergence is NOT defined and save_best_chi2 is NOT defined then val-
ues saved corresponds to those of the last iteration.

• If continue_after_convergence is NOT defined and save_best_chi2 is defined then values
saved corresponds to those that gave the best 𝜒2.

• If continue_after_convergence is defined and save_best_chi2 is NOT defined then values
saved corresponds to those that gave the best Rwp.

• If continue_after_convergence and save_best_chi2 is defined then values saved corre-
sponds to those that gave the best 𝜒2.

When there are no penalties or restraints then the best 𝜒2 corresponds to the best Rwp.

4.9 Error calculation

Estimated standard deviations for refined independent parameters are calculated at the end
of refinement. The correlation matrix, if defined using C_matrix_normalized, is updated. Oth-
erwise, the correlation matrix is created and appended to the OUT file.

do_errors: Errors calculated; penalties and restraints NOT included in the A matrix.

do_errors_include_restraints: Errors calculated; restraints included in the A matrix.

do_errors_include_penalties: Errors calculated; penalties included in the A matrix.

4.10 ... Error determination using SVD and bootstrap errors

Singular Value Decomposition (SVD) is used for errors determination. These errors closely re-
semble those obtained by the boot strap method. bootstrap_errors are potentially more accu-
rate as parameter limits are considered; for example, the fact that intensities are positive is
not considered by matrix inversion. use_LU_for_errors forces the use of LU decomposition;
LU-decomposition results in very large errors for intensities that are 100% correlated. The
three means of determining errors are demonstrated in a Pawley refinement of Y2O3 in the

The Minimization Routines 44

44 The Minimization Routines

examples Y2O3A-LU.INP, Y2O3A-SVD.INP and Y2O3A-BOOT.INP found in the directory TEST_EX-
AMPLES\SVD-ERRORS.

bootstrap_errors use the bootstrap method of error determination (Efron & Tibshirani 1986,
DiCiccio & Efron 1996, Chernick 1999). Bootstrapping comprises a series of refinements each
with a fraction of Yobs modified to obtain a new bootstrap sample. The standard deviations of
the refined values then become the bootstrap errors. !Ecycles corresponds to the number of
refinement cycles to perform for bootstrapping, the default is 200. The resulting bootstrapping
errors are written to the OUT file. fraction_of_yobs_to_resample corresponds to the fraction of
the observed data that is to be replaced each refinement cycle, it defaults to 0.37. Replace-
ment data is, by default, obtained randomly from Ycalc as determined in the first refinement
cycle. If resample_from_current_ycalc is defined, then replacement data are obtained from
the currently completed refinement cycle. The updated Yobs data is additionally modified
such that the change in Rwp is unchanged with respect to the current Ycalc. Parameter values
used at the start of each refinement cycle are obtained from the end of the first refinement
cycle. val_on_continue can additionlly be used to change parameter values at the start of a
cycle. If determine_values_from_samples is defined, then parameter values at the end of
bootstrapping are updated with values determined from the bootstrapping refinement cycles.
Parameter values obtained at the end of each bootstrap refinement cycle is written to disk in
binary format. These values are then read and processed at the end of the bootstrap process
without storing the values in memory; the bootstrap process therefore has a small memory
footprint.

4.11 ... Error Propagation using prm_with_error

Parameter errors determined outside of refinement can be included and propagated to de-
pendent parameters using prm_with_error. For example, consider the INP snippet (see
TEST_EXAMPLES\PRM-WITH-ERROR.INP):

xo_Is
 xo 0 I = 10 t i;
 prm i 9.99999`_0.00065 min 1e-6
 prm_with_error !t 1_0.33
 prm t_squared = t^2; : 1.00000`_0.66000

Here t is defined using prm_with_error and with an error of 0.33; this error is used in determin-
ing errors for dependent parameters, such as t_squared, that are a function of t.

4.12 ... xdd_sum and xdd_array

[xdd_array !E] ...
[xdd_sum !E] ...

Example
TEST_EXAMPLES\PDF\GENERATE\I15-DECON.INP

xdd_array calculates and stores an array of values which can then be used in equations which
can in turn be a function of the reserved parameter names of X, Yobs, Ycalc and SigmaYobs.
For example, applying the Si atomic scattering factor correction to an xo_Is phase can be per-
formed as follows:

The Minimization Routines 45

45 The Minimization Routines

xo_Is …
xdd_array si_f0 =

2 (‘ atomic scattering data from atmscat.cpp
5.275329 Exp(-2.631338 (Sin(X Pi/360)/Lam)^2) +
3.191038 Exp(-33.730728 (Sin(X Pi/360)/Lam)^2) +
1.511514 Exp(-0.081119 (Sin(X Pi/360)/Lam)^2) +
1.356849 Exp(-86.288643 (Sin(X Pi/360)/Lam)^2) +
2.519114 Exp(-1.170087 (Sin(X Pi/360)/Lam)^2) +
0.145073);

scale_phase_X = si_f0; ‘ apply the atomic scatter factor

The above will give the same result if xdd_array is replaced by prm. The latter does not store
the array and therefore the equation is calculated every time si_f0 is used. Because xdd_array
is an equation, the program automatically keeps track of its dependencies; this means xdd_ar-
ray array is recalculated only when the equation changes; changes can happen, for example,
if the equation is a function of a refinable parameter and the refined parameter changes. This
recalculation only occurs when the array is being referenced; it does not occur at the instance
of a dependency change. Use of xdd_array therefore produces fast and efficient INP files.

xdd_sum is similar to xdd_array except an array is not stored; instead, the sum of the values of
the array are calculated and stored. Similar to xdd_array, the summed value of xdd_sum is only
recalculated when necessary. xdd_sum can be nested, for example, to normalize the intensi-
ties between Yobs and Ycalc the following is possible:

xdd_sum sum_yobs = Yobs;
xdd_sum sum_ycalc = Ycalc;
xdd_sum = (Yobs – Ycalc sum_yobs / sum_ycalc)^2;
xdd_sum num_data_points = 1;: 0 ‘ 0 is replace by the number of data points

4.13 ... Refining on an arbitrary Chi2

chi2 allows for the minimization of a User defined 𝜒2. It can be a function of the reserved pa-
rameter names X, Yobs, Ycalc and SigmaYobs. In addition, xdd_sum can also be a function of
these reserved parameter names. For example, the following can be used to define a normal
least squares refinement:

xdd ...
xdd_sum denominator = Yobs;
xdd_sum numerator = (Yobs - Ycalc)^2 / Max(Yobs, 1);
chi2 = 100 Sqrt(numerator / denominator);

In refining on an arbitrary chi2, the first and second derivatives of chi2 with respect to each
independent parameter are required. To do this fast, Ycalc within chi2 is approximated with a
first order Taylor approximation around the parameter vector p. This approximation, for vari-
ous formulations of chi2, has yielded good convergence even for non-linear parameters. To
summarize:

• chi2 is treated as a penalty.

• For each independent parameter, a definite minimum in chi2 is bracketed; inverse para-
bolic interpolation is then used to determine the minima of chi2 with respect to that

The Minimization Routines 46

46 The Minimization Routines

parameter. In the calculation of chi2, Ycalc is replaced with its first order Taylor approxi-
mation and thus the full Ycalc is only calculated once per refinement iteration and not 100s
of times.

• Finding the minima and the curvature of chi2 with respect to each parameter yields 1st and
2nd order derivatives of chi2 with respect to each parameter.

• The BFGS method (approximate_A) is then used to solve the resulting linear equations with
off diagonal terms approximated according to the BFGS method.

• The BCCG method incorporating the Marquardt method with automatic Marquardt con-
stant determination is used to solve the matrix equations.

The Rietveld refinement example of TEST_EXAMPLES\CHI2-CEO2.INP demonstrates various
scenarios:

Case 1) Here’s output when NOT using chi2.

 0 Time 0.05 Rwp 26.630 0.000 MC 0.00 0
 1 Time 0.06 Rwp 16.651 -9.979 MC 0.06 1
 2 Time 0.06 Rwp 7.510 -9.141 MC 0.02 1
 3 Time 0.08 Rwp 6.955 -0.556 MC 0.01 1
 4 Time 0.08 Rwp 6.943 -0.011 MC 0.00 1
 5 Time 0.08 Rwp 6.923 -0.020 MC 0.00 1
 6 Time 0.09 Rwp 6.923 -0.000 MC 0.18 1
--- 0.094 seconds ---

Case 2) Here’s output when NOT using chi2 but using approximate_A.

 0 Time 0.05 Rwp 26.630 0.000 MC 0.00 0
 1 Time 0.06 Rwp 16.883 -9.747 MC 0.00 0
 ...
 16 Time 0.13 Rwp 6.950 -0.002 MC 0.04 1
 17 Time 0.14 Rwp 6.949 -0.002 MC 0.09 1
 18 Time 0.14 Rwp 6.949 -0.000 MC 0.29 1
--- 0.14 seconds ---

Case 3) Here’s output using chi2 defined for normal least squares.

 0 Time 0.03 Rwp 26.630 0.000 MC 0.00 0 P 26.63020
 1 Time 0.06 Rwp 15.897 -10.733 MC 0.00 0 P 15.89696
 ...
 13 Time 0.33 Rwp 6.974 -0.021 MC 0.00 1 P 6.97366
 14 Time 0.34 Rwp 6.958 -0.016 MC 0.00 1 P 6.95755
 15 Time 0.38 Rwp 6.951 -0.006 MC 0.00 1 P 6.95122

The chi2 case (3) looks similar-to case (2); however, the path towards the minima is different
as the chi2 procedure is very different to normal least squares refinement.

4.14 ... Reporting on unrefined parameters

Parameters that do not take part in refinement are reported, for example, the following, where
a and b are not used in any equations:

prm a 1 prm b 1

will result in the output:

The Minimization Routines 47

47 The Minimization Routines

Number of independent parameters not taking part in refinement: 2
prm_10: a
prm_10: b

The val_on_continue attribute of unrefined parameters are executed at the end of conver-
gence. It can be useful, for example,

prm a 1 val_on_continue = b = 2; ‘ this sets the b parameter to 2

4.15 ... Summary, Iteration and Refinement Cycle

Table 4-1 shows various keyword usages for typical refinement problems. The term “refine-
ment cycle” is used to describe a single convergence. The reserved parameter Cycle returns
the current refinement cycle with counting starting at zero. The reserved parameter Cycle_Iter
returns the current iteration within the current Cycle with counting starting at zero.

Table 4-1. Keyword sequences for various refinement types.

Refinement type Keywords to use Comments

Rietveld refinement.
No penalties.

 Marquardt refinement.
A matrix calculation.

Rietveld refinement with a
moderate number of penal-
ties.

line_min
(Maybe)

Line minimization used if
line_min.
Marquardt refinement.
A matrix calculation.

Rietveld refinement domi-
nated by penalties.

approximate_A BFGS method of refinement.
A matrix approximation.

Pawley refinement. line_min Line minimization.
Marquardt refinement.
A matrix calculation.

Penalties only. BFGS method of refinement.
A matrix approximation.

Refinements with a large
number of parameters and
a few xdds.

approximate_A BFGS method of refinement.
A matrix approximation.

Refinements with a large
number of xdds and param-
eters.

approxi-
mate_A_check_for_must

_be_zero

BFGS method of refinement.
A matrix approximation.

4.16 ... quick_refine and computational issues

The computationally dominant factor of Eq. (4-5) is problem dependent. For Rietveld refine-
ment with a moderate number of parameters, the calculation of the peak parameter deriva-
tives may well be the most expensive item. On the other hand, for Rietveld refinement with
many structural parameters and data points then the calculation of the A1,ij dot products would
be the dominant factor, where the number of operations scale by M(N2+N)/2. Before the

The Minimization Routines 48

48 The Minimization Routines

development of the BCCG routine (Coelho, 2005), the solution to the normal equations, Eq.
(4-4), was also very expensive. For structure solution from powder data by simulated anneal-
ing, yobs_to_xo_posn_yobs can be used to reduce the number of data points M which reduces
the number of operations in the A1,ij dot products, see the Decompose macro in example CIME-
DECOMPOSE.INP. quick_refine removes parameters during a refinement cycle thus shrinking
the size of the A matrix by reducing N and hence speeding up refinement iterations. Parame-
ters are removed if the condition defined in Eq. (4-9) is met for three consecutive iterations.

∆𝑝𝑖 < 0.01 quick_refine (𝐾 𝑁 𝑌𝑖)⁄ (4-9)

Alternatively, parameters can be removed or reinstated during a refinement cycle using

quick_refine_remove. This keyword provides a means of performing block refining. If quick_re-
fine_remove is not defined, then all parameters are reinstated at the start of refinement cycles.
Use of quick_refine speeds up simulated annealing, see for example the Auto_T macro which
is used in example AE1-AUTO.INP. All refined parameters are reinstated for refinement at the
start of subsequent cycles. Large quick_refine values aggressively removes parameters and
convergence to low 𝜒2 maybe hindered. A value of 0.1 works well. quick_refine has the follow-
ing consequences:

• If parameters are not reinstated using quick_refine_remove then 𝜒2 does not get to its low-
est possible value for a particular refinement cycle.

• The degree of parameter randomization increases with increasing values of quick_refine.
Randomization should therefore be reduced as quick_refine increases. Alternatively ran-
domize_on_errros can be used which automatically determines the amount a parameter is
randomized.

If quick_refine_remove evaluates to a non-zero value then the associated parameter is re-
moved from refinement, similarly parameters are reinstated if quick_refine_remove evaluates
to zero. quick_refine_remove can be a function of the reserved parameters QR_Removed or
QR_Num_Times_Consecutively_Small and additionally global reserved parameter names
such as Cycle_Iter, Cycle and T. If quick_refine_remove is not defined, then the removal
scheme of Eq. (4-9) is used and parameters are not reinstated until the next refinement cycle.
In most refinements the following will produce close to the lowest 𝜒2 and in a short time (see
for example PAWLEY1.INP).

quick_refine 0.1
 quick_refine_remove =
 IF QR_Removed THEN
 0 ‘ reinstate the parameter
 ELSE
 IF QR_Num_Times_Consecutively_Small > 2 THEN
 1 ‘ remove the parameter
 ELSE
 0 ‘ dont remove the parameter
 ENDIF
 ENDIF;

The Minimization Routines 49

49 The Minimization Routines

4.17 ... Simulated annealing and Auto_T

Refinement is continued after convergence when continue_after_convergence is defined. Be-
fore continuing the following actions are performed:

• val_on_continue equations for independent parameters are evaluated.

• randomize_on_errors processes are performed.

• rand_xyz processes are performed.

When val_on_continue is defined, the corresponding parameter is not randomized according
to randomize_on_errors. Simulated annealing is invoked using continue_after_convergence. It
is sometimes difficult to formulate optimum val_on_continue functions; this is especially true
in structure solution using rigid bodies where optimum randomization of the rigid body param-
eters can be difficult to ascertain. randomize_on_errors is a means of automatically random-
izing parameters based on the approximate errors in the parameters as given in Eq. (4-10),
where T is the current temperature and K is as defined in Eq. (4-3).

∆𝑝𝑖 = 𝑄 𝑆𝑖𝑔𝑛(𝑅𝑎𝑛𝑑(−1,1))√0.02 𝑇 (𝐾 𝐴𝑖𝑖)⁄ (4-10)

Q is a scaling factor determined such that convergence to a previous parameter configuration

occurs 7.5% of the time on average. When randomize_on_errors is used, relative variation in

temperature(s) are significant and not absolute values. The Auto_T macro includes quick_re-
fine, randomize_on_errors and a temperature regime. It has shown to be adequate for a wide
range of simulated annealing examples, see example CIME-Z-AUTO.INP.

4.18 ... Adaptive step size using randomize_on_errors

Use of randomize_on_errors result in an adaptive-step-size determination during simulated
annealing; in many cases the complex temperature regime found in the Auto_T macro can be
replaced with a single temperature. The example CIME-Z-AUTO.INP demonstrates random-
ize_on_errors by using a very incorrect starting temperature of 0.1; the program quickly modi-
fies the temperature to a more appropriate value. Output lines such as:

Breaking - randomize on errors revisit

indicate that a parameter configuration has been revisited and the temperature will be inter-
nally adjusted. Note, with randomize_on_errors, relative temperature values are pertinent and
not absolute values.

4.19 ... Criteria of fit

Trwp
[r_p #] [r_wp #] [r_exp #] [gof #] [r_p_dash #] [r_wp_dash #] [r_exp_dash #]
[weighted_Durbin_Watson #]

Global and xdd dependent refinement indicators. Keywords ending in “_dash” correspond to
background subtracted values.

The Minimization Routines 50

50 The Minimization Routines

Table 4-2. Criteria of fit (Young , 1993). Yo,m and Yc,m are the observed and calculated data
respectively at data point m; Bkgm the background, M the number of data points, N the num-
ber of parameters, wm the weighting given to data point m; for counting statistics
wm=1/(Yo,m)2 where (Yo,m) is the error in Yo,m. And Io,k and Ic,k the observed and calculated
intensities of the kth reflection. 1) background corrected.

R-pattern, Rp'
𝑅𝑝 =

∑|𝑌𝑜,𝑚 − 𝑌𝑐,𝑚|

∑ 𝑌𝑜,𝑚
 𝑅𝑝

′ =
∑|𝑌𝑜,𝑚 − 𝑌𝑐,𝑚|

∑|𝑌𝑜,𝑚 − 𝐵𝑘𝑔𝑚|

R-weighted pattern,
Rwp, 1Rwp' 𝑅𝑤𝑝 = √

∑ 𝑤𝑚(𝑌𝑜,𝑚 − 𝑌𝑐,𝑚)
2

∑ 𝑤𝑚𝑌𝑜,𝑚
2

 𝑅𝑤𝑝
′ = √

∑ 𝑤𝑚(𝑌𝑜,𝑚 − 𝑌𝑐,𝑚)
2

∑ 𝑤𝑚(𝑌𝑜,𝑚 − 𝐵𝑘𝑔𝑚)
2

R-expected, 1Rexp
’

𝑅𝑒𝑥𝑝 = √
𝑀 − 𝑁

∑ 𝑤𝑚𝑌𝑜,𝑚
2

 𝑅𝑒𝑥𝑝
′ = √

𝑀 − 𝑁

∑ 𝑤𝑚(𝑌𝑜,𝑚 − 𝐵𝑘𝑔𝑚)
2

Goodness of fit,
GOF 𝐺𝑂𝐹 = 𝑐ℎ𝑖 =

𝑅𝑤𝑝

𝑅𝑒𝑥𝑝
= √∑ 𝑤𝑚(𝑌𝑜,𝑚 − 𝑌𝑐,𝑚)

2

𝑀 − 𝑁

R-Bragg
𝑅𝐵 =

∑|𝐼𝑜,𝑘 − 𝐼𝑐,𝑘|

∑ 𝐼𝑜,𝑘

Durbin-Watson, d,
1971; Hill & Flack,
1987

𝑑 =
∑ (𝛥𝑌𝑚 − 𝛥𝑌𝑚−1)2𝑀

𝑚=2

∑ (𝛥𝑌𝑚)2𝑀
𝑚=1

 ; Δ𝑌𝑚 = 𝑌𝑜,𝑚 − 𝑌𝑐,𝑚

Peak Generation and "peak_type" 51

51 Peak Generation and "peak_type"

5. .. PEAK GENERATION AND "PEAK_TYPE"
Convolution implies integration; a function analytically integrated is exact whereas numerical
integration is an approximation with an accuracy dependent on the step size used for integra-
tion. Accurate numerical convolution is used when analytical convolution is not possible; this
makes it possible to include complex functions in the generation of peak shapes. Laboratory
instrument aberration functions mostly require numerical convolution. This process of convo-
lution, from a fundamental-parameters perspective (Cheary & Coelho, 1992; Cheary et al.,
2004), is an approximation; second order effects and higher are typically neglected. These ap-
proximations are valid except for extreme cases that are unlikely to exist in practice, for exam-
ple, axial divergence with Soller slits acceptance angles that are greater than about 12 degrees.

5.1 Source emission profiles

Generation of the emission profile is the first step in peak generation. It comprises EM lines,

EMk, each of which is a Voigt comprising the parameters la, lo, lh and lg. The reserved param-
eter name Lam is assigned the lo value of the EMk line with the largest la value, this EMk will be
called EMREF. It is used to calculate d-spacings. The interpretation of EM data is dependent
on peak_type. For all peak types, the position 2k calculated for an emission line for a Bragg
position of 2 is determined as:

2𝜃 = 𝐴𝑟𝑐𝑆𝑖𝑛 (
𝐸𝑀(𝑘, 𝑙𝑜)

2𝑑
)

360

𝜋
 where 2𝑑 =

𝐸𝑀𝑅𝐸𝐹(𝑙𝑜)

𝑆𝑖𝑛(𝜃)

2 for xo_Is phases corresponds to the xo parameter. 2 for d_Is phases is given by the Bragg
equation 2 = ArcSin(Lam/(2 d)) 360/Pi where d corresponds to the value of the d parameter.
2 values for str and hkl_Is phases are calculated from the lattice parameters. The FWHWk in
°2 for an EMk line is determined from the relations provided in Table 5-1. When no_th_depend-
ence is defined then the calculation of 2k is determined from

2k = 2 + EM(lo, i)

The macro No_Th_Dependence can be used when refining on non-X-ray data or fitting to nega-
tive 2 values (see example NEGX.INP). The x-axis extent (x1, x2) to which an EM line is calcu-
lated is determined by:

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐸𝑀(𝑖, 𝑥 = 𝑥1 = 𝑥2)

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐸𝑀𝑅𝐸𝐹(𝑥 = 0)
= 𝑦𝑚𝑖𝑛_𝑜𝑛_𝑦𝑚𝑎𝑥

The default value for ymin_on_ymax is 0.001. Emission profile data have been taken from
Hölzer et al. (1997) and are stored in *.LAM files in the LAM directory.

Table 5-1. FWHWk in °2 for an EMk line for the different peak types.

FP peak type 𝐹𝑊𝐻𝑀𝑘 = (
𝐸𝑀(𝑘, 𝑙ℎ)

𝐿𝐴𝑀
)

𝑇𝑎𝑛(𝜃)360

𝜋

Peak Generation and "peak_type" 52

52 Peak Generation and "peak_type"

PV peak type 𝐹𝑊𝐻𝑀𝑘 =
pv_fwhm 𝐸𝑀(𝑘, 𝑙ℎ)

𝐸𝑀𝑅𝐸𝐹(𝑙ℎ)

SPVII peak type 𝐹𝑊𝐻𝑀𝑘 =
 (ℎ1 + ℎ2)𝐸𝑀(𝑘, 𝑙ℎ)

𝐸𝑀𝑅𝐸𝐹(𝑙ℎ)

SPV peak type 𝐹𝑊𝐻𝑀𝑘 =
 (𝑠𝑝𝑣ℎ1

+ 𝑠𝑝𝑣ℎ2
)𝐸𝑀(𝑘, 𝑙ℎ)

𝐸𝑀𝑅𝐸𝐹(𝑙ℎ)

5.2 Peak generation and peak types

Phase peaks P are generated as follows:

P = Get(scale) Get(all_scale_pks) EM(peak_type)  Convolutions (5-1)

where the emission profile (EM) is generated first with emission profile lines of type peak_type;
the symbol  denotes convolution. Peaks are then convoluted with any defined convolutions,
multiplied by the scale parameter, multiplied by any defined scale_pks, and then multiplied
by an intensity parameter. For xo_Is, d_Is and hkl_Is phases the intensity is given by the I pa-
rameter. For str phases it corresponds to the square of the structure factor F2(hkl). Convolu-
tions are normalized and do not change the area under a peak except for the capillary_diame-
ter_mm and lpsd_th2_angular_range_degrees convolutions. The area under the emission pro-
file is determined by the sum of the la parameters; typically, they add up to 1. The definitions
of the pseudo-Voigt and PearsonVII functions are provided in Table 5-2.

Table 5-2. Unit area peak types. x corresponds to (2−2k) where 2k is the position of the kth
reflection. fwhm corresponds to the Full Width at Half Maximum.  is the PV mixing param-
eter. The ‘1’ and ‘2’ subscripts correspond to the left and right of the split functions.

Gaussian

𝐺𝑈𝐴(𝑥) = (
𝑔1

𝑓𝑤ℎ𝑚
) 𝐸𝑥𝑝 (

−𝑔2𝑥2

𝑓𝑤ℎ𝑚2
), 𝑔1 = 2√

𝐿𝑛(2)

𝜋
, 𝑔2 = 4𝐿𝑛(2)

Lorentzian

𝐿𝑈𝐴(𝑥) =
(

𝑙1

𝑓𝑤ℎ𝑚
)

(1 +
𝑙2𝑥2

𝑓𝑤ℎ𝑚2)
, 𝑙1 =

2

π
, 𝑙2 = 4

PseudoVoigt 𝑃𝑉 = 𝜂𝐿𝑈𝐴(𝑥) + (1 − 𝜂)𝐺𝑈𝐴(𝑥)

Peak Generation and "peak_type" 53

53 Peak Generation and "peak_type"

Split PearsonVII

 SPVII

𝑆𝑃𝑉𝐼𝐼 = 𝑃𝑉𝐼𝐼𝐿𝑒𝑓𝑡 + 𝑃𝑉𝐼𝐼𝑅𝑖𝑔ℎ𝑡

𝑃𝑉𝐼𝐼𝐿𝑒𝑓𝑡 = 𝑎−1(1 + 𝑏1𝑥2)−𝑚1 , for (−∞ < 𝑥 < 0)

𝑃𝑉𝐼𝐼𝑅𝑖𝑔ℎ𝑡 = 𝑎−1(1 + 𝑏2𝑥2)−𝑚2 , for (0 < 𝑥 < ∞)

𝑎 = ½ 𝛤(½) (
𝛤(𝑚1 − ½)

𝛤(𝑚1)√𝑏1

+
𝛤(𝑚2 − ½)

𝛤(𝑚2)√𝑏2

)

𝑏1 = (2
1

𝑚1 − 1) ℎ1
−2, 𝑏2 = (2

1
𝑚2 − 1) ℎ2

−2

𝑓𝑤ℎ𝑚1 = 2 ℎ1, 𝑓𝑤ℎ𝑚2 = 2 ℎ2, 𝑓𝑤ℎ𝑚 = ℎ1+ ℎ2

Split PseudoVoigt

 SPV
𝑆𝑃𝑉 =

2(𝑃𝑉𝐿𝑒𝑓𝑡 + 𝑎 𝑃𝑉𝑅𝑖𝑔ℎ𝑡)

1 + 𝑎

𝑃𝑉𝐿𝑒𝑓𝑡 = 𝑃𝑉(ℎ1, 𝜂1), for (−∞ < 𝑥 < 0)

𝑃𝑉𝑅𝑖𝑔ℎ𝑡 = 𝑃𝑉(ℎ2, 𝜂2), for (0 < 𝑥 < ∞)

𝑎 =
𝑃𝑉𝐿𝑒𝑓𝑡(𝑥 = 0)

𝑃𝑉𝑅𝑖𝑔ℎ𝑡(𝑥 = 0)

𝑓𝑤ℎ𝑚1 = 2 ℎ1, 𝑓𝑤ℎ𝑚2 = 2 ℎ2, 𝑓𝑤ℎ𝑚 = ℎ1+ ℎ2

Lorentzian and Gaussian convolutions using lor_fwhm and gauss_fwhm equations are analyt-
ically convoluted with FP and PV peak types and numerically convoluted with the SPVII and
SPV peak types. These numerical convolutions have a high degree of accuracy as they com-
prise analytical Lorentzian and Gaussian functions convoluted with straight line segments. For
FP and PV peak types, the first defined hat convolution is convoluted analytically. Additional
hat convolutions for all peak types are convoluted numerically. For classic analytical full pat-
tern fitting the macros PV_Peak_Type, PVII_Peak_Type, TCHZ_Peak_Type can be used. These
macros use the following relationships to describe profile width as a function of 2.

PV_Peak_Type

fwhm = ha + hb tan() + hc/cos()

 = lora + lorb tan() + lorc/cos()

where ha, hb, hc, lora, lorb, lorc are re-
fineable parameters.

PVII_Peak_Type

fwhm1 = fwhm2 = ha + hb tan() + hc/cos()

m1 = m2 = 0.6 + ma + mb tan() + mc/cos()

where ha, hb, hc, ma, mb, mc are refineable pa-
rameters.

TCHZ_Peak_Type: The modified Thompson-Cox-Hastings pseudo-Voigt "TCHZ" is defined as
(e.g. Young, 1993, see example ALVO4_TCH.INP):

 = 1.36603 q - 0.47719 q2 + 0.1116 q3

where q = L / 
 = (G

5 + AG
4L + BG

3L
2 + CG

2L
3 + DGL

4 + L
5)0.2 = fwhm

A = 2.69269, B = 2.42843, C = 4.47163, D = 0.07842
G = (U tan2 + V tan + W + Z / cos2)0.5

Peak Generation and "peak_type" 54

54 Peak Generation and "peak_type"

L = X tan +Y / cos

with U, V, W, X, Y, Z as refined parameters.

5.3 Convolution and the peak generation stack

The emission profile of a peak P0 of a certain peak type (i.e. FP, PV etc…) is first calculated and
placed onto a ‘Peak calculation stack’. P0 analytically includes lor_fwhm and gauss_fwhm

convolutions for FP and PV peak types and additionally one hat convolution if defined; the hat
convolution is included analytically only if its corresponding num_hats has a value of 1 and if
it does not take part in stack operations. Further defined convolutions are convoluted with the
top member of the stack. The last convolution should leave the stack with one entry represent-
ing the final peak shape. The following keywords allow for manipulation of the Peak calculation
stack:

[push_peak]...

[bring_2nd_peak_to_top]...

[bring_n_peak_to_top !E]...

[add_pop_1st_2nd_peak]...

[scale_top_peak E]...

[set_top_peak_area E]...

push_peak duplicates the top of the stack; bring_2nd_peak_to_top brings the second entry to
the top of the stack, bring_n_peak_to_top brings the nth peak to the top (n=0 corresponds to
the top of the stack) and add_pop_1st_2nd_peak adds the top entry to the second most recent
entry and then pops the stack. scale_top_peak scales the peak at the top of the stack. As an
example, consider the generation of back-to-back exponentials as required by GSAS time of
flight peak shape 3:

push_peak
 prm a0 481.71904 del = 0.05 Val + 2;
 prm a1 -241.87060 del = 0.05 Val + 2;
 exp_conv_const = a0 + a1 / D_spacing;
bring_2nd_peak_to_top
 prm b0 -3.62905 del = 0.05 Val + 2;
 prm b1 6.44536 del = 0.05 Val + 2;
 exp_conv_const = b0 + b1 / D_spacing^4;
add_pop_1st_2nd_peak

The first statement push_peak pushes P0 onto the stack leaving two peaks on the stack:

Stack = P0, P0

The top member is then convoluted by the first exp_conv_const convolution, or,

Stack = P0, P0  exp_conv_const

where  denotes convolution. bring_2nd_peak_to_top results in the following:

Stack = P0  exp_conv_const, P0

Peak Generation and "peak_type" 55

55 Peak Generation and "peak_type"

and the next convolution results in:

Stack = P0  exp_conv_const, P0  exp_conv_const

Thus, the stack contains two peaks convoluted with exponentials. The last statement
add_pop_1st_2nd_peak produces:

Stack = P0  exp_conv_const + P0  exp_conv_const

Convolutions applied to peaks are normalized after convolution. Thus, the following, from WIF
David’s macro wifd_mic_moderator, will give unintended peak shapes:

push_peak ‘ first peak
scale_top_peak = 1 - storage

bring_2nd_peak_to_top ‘ second peak
exp_conv_const = -Ln(0.001) / (taus_0 + taus_1 / lam^2);
scale_top_peak = storage;

add_pop_1st_2nd_peak

where the ratio of the areas of the first peak to the second peak won’t be (1-storage)/storage.
This can be remedied by normalizing the exp_conv_const aberration as follows:

push_peak
scale_top_peak = 1 - storage;

bring_2nd_peak_to_top
exp_conv_const = -Ln(0.001) / (taus_0 + taus_1 / lam^2);
scale_top_peak = storage Yobs_dx_at(Xo);

add_pop_1st_2nd_peak

However, not all aberrations are easily normalized; set_top_peak_area overcomes this prob-
lem by normalizing the area itself in situ. The INP segment can now be written as:

push_peak
set_top_peak_area = 1 - storage;

bring_2nd_peak_to_top
exp_conv_const = -Ln(0.001) / (taus_0 + taus_1 / lam^2);
set_top_peak_area = storage;

add_pop_1st_2nd_peak

5.4 Speed / Accuracy and peak_buffer_step

For computational efficiency, phase peaks are calculated at predefined 2 intervals in a “peaks
buffer”. In between peaks are determined by stretching and interpolating. Use of the peaks
buffer dramatically reduces the number of peaks calculated. Typically, no more than 50 to 100
peaks are necessary to accurately describe peaks across a whole diffraction pattern. The fol-
lowing keywords affect the accuracy of phase peaks:

[peak_buffer_step !E]

[convolution_step #1]

[ymin_on_ymax #]

[aberration_range_change_allowed !E]

Peak Generation and "peak_type" 56

56 Peak Generation and "peak_type"

Default values for these are typically adequate. peak_buffer_step determines the maximum x-
axis spacing between peaks in the peaks buffer, it has a default value of 500*Peak_Calcula-
tion_Step. A value of zero will force the calculation of a new peak in the peaks buffer for each
peak of the phase. Note that peaks are not calculated for x-axis regions that are void of phase
peaks. convolution_step defines an integer corresponding to the number of calculated data
points per measurement data point used to calculate the peaks in the peaks buffer, see x_cal-
culation_step. Increasing the value for convolution_step improves accuracy for data with large
step sizes or for peaks that have less than 7 data points across the FWHM. ymin_on_ymax de-
termines the x-axis extents of a peak (see also section 5.1). aberration_range_change_allowed

describes the maximum allowed change in the x-axis extent of a convolution aberration before
a new peak is calculated for the peaks buffer. For example, in the case of axial_conv the spac-
ing between peaks in the peaks buffer should be small at low angles and large at high angles.
aberration_range_change_allowed is a dependent of the peak type parameters and convolu-
tions as shown in Table 5-3. Small values for aberration_range_change_allowed reduces the
spacing between peaks in the peaks buffer and subsequently increase the number of peaks in
the peaks buffer.

Table 5-3. Default values for aberration_range_change_allowed.

Parameter Default aberration_range_change_allowed

m1, m2 0.05

pv_lor, spv_l1, spv_l2 0.01

h1, h2, pv_fwhm, spv_h1, spv_h2 Peak_Calculation_Step

hat, axial_conv, whole_hat, half_hat Peak_Calculation_Step

one_on_x_conv, exp_conv_const, cir-
cles_conv

Peak_Calculation_Step

lor_fwhm, gauss_fwhm Peak_Calculation_Step

5.5 The peaks buffer, speed and memory considerations

Anisotropic peak shapes result in the peaks-buffer holding as many peaks as there are hkls.
For problems with 100,000s of peaks the calculation time and storage of the peaks-buffer can
be prohibitive. This situation can be mitigated using the phase dependent
peak_buffer_based_on:

[str | hkl_Is | xo_Is | d_Is]
[peak_buffer_based_on !E [peak_buffer_based_on_tol !E]]...

When peak_buffer_based_on is defined, the usual means of determining the size of the peak
buffer is over-ruled. Instead, peaks are grouped according to the peak_buffer_based_on crite-
rion. For example, to insert a peak into the peak buffer at x-axis intervals of 1 then the following
can be used:

peak_buffer_based_on = Xo; peak_buffer_based_on_tol 1

Peak Generation and "peak_type" 57

57 Peak Generation and "peak_type"

Thus, peaks with similar Xo’s, as defined by peak_buffer_based_on_tol, are grouped. Occa-
sionally peaks that are a function of hkls have groups of hkls that are of the same peak shape
and at a similar x-axis position. The following demonstrates how to group these peaks such
that a single peak shape is calculated.

peak_buffer_based_on = Xo; peak_buffer_based_on_tol 0.01
peak_buffer_based_on = sh; peak_buffer_based_on_tol 1e-7

where sh can be a spherical harmonics parameter or an equation describing hkl dependence
or a march_dollase parameter. When more than one peak_buffer_based_on is defined then
peak groups obey all of the peak_buffer_based_on‘s. peak_buffer_based_on disables the peak
stretching procedures and any defined aberration_range_change_allowed.
peak_buffer_based_on can be a function of the reserved parameters H, K, L, M, D_spacing, X,
Xo, Th.

Depending on the problem, smaller values such as 1e-7 can significantly reduce the number
of peaks stored in the peaks buffer (a factor of 15 at times) without significantly affecting Rwp.
A negative value for peak_buffer_based_on_tol will force a calculation for each peak resulting
in independent hkl peak shapes, for example:

peak_buffer_based_on 1 peak_buffer_based_on_tol -1

5.6 An Accurate Voigt

[more_accurate_Voigt] can be used to override the default Pseudo-Voigt approximation to the
Voigt. It decreases the error (Voigt_approx – Voigt_true) by a factor of ~100. Defining G as the
FWHM of a Gaussian and L as the FWHM of a Lorentzian; the screen shots below show fits to
a range of G convoluted with L, resulting in Voigts, with L varying from 0.01 to 0.09 and G+L=1.
Fitting to the Voigts using pseudo-Voigts we get

Fitting to the Voigts using the accurate calibration results in the small difference plots seen in
the following:

Peak Generation and "peak_type" 58

58 Peak Generation and "peak_type"

The more_accurate_Voigt calibration is accurate and fast. It fits to each true Voigt the follow-
ing:

fit_obj = a1 (2 Sqrt(Ln(2) / Pi) / f1) Exp(-4 Ln(2)(X / f1)^2);
fit_obj = a2 (2 Sqrt(Ln(2) / Pi) / f2) Exp(-4 Ln(2)(X / f2)^2);
fit_obj = a3 (2 / (Pi f3)) / (1 + 4 (X / f3)^2);
fit_obj = a4 (4 / (Pi f4)) / (1 + 4 (X / f4)^2)^2;

One thousand sets of a0, a1, a2, a3, f0, f1, f2, f3 parameters were determined by fitting to 1000
true Voigts with L varying from 0 to 1 in steps of 0.001.

numerical_lor_gauss_conv creates a ‘true’ Voigt by numerically convoluting Gaussians with
Lorentzians; the extents to which these aberrations are calculated can be defined using nu-
merical_lor_ymin_on_ymax (default of 0.0001). The CREATE.INP file in the TEST_EXAM-
PLES\VOIGT-APPROX directory uses numerical_lor_gauss_conv where the amount of Lo-
rentzian is entered as a number out of a 1000. A value of 500 would yield a Voigt with a Lo-
rentzian FWHM of 0.5 and a Gaussian FWHM of 0.5. The generated true Voigt is calculated by
numerically convoluting a lor_fwhm with a gauss_fwhm. The generated true Voigt is saved to a
file with the name VOIGTNNNN.XY, where NNNN corresponds to a number between 0 and
1000. The file generated contains 100,000 data points. The step size used in the convolutions
is as small as 0.0005 when using a convolution_step of 4.

TOPAS uses an FFT to perform the double summation of the convolution. However, for lor >
500, the convolution itself comprises an analytical Lorentzian with a Gaussian comprising
straight line segments. For lor < 500 then an analytical Gaussian is convoluted with a Lo-
rentzian comprising straight line segments.

• The file FIT-PV.INP fits a pseudo-Voigt to the generated true Voigt.

• The file FIT-MORE.INP fits to the generated true Voigt using equivalent fit_obj’s.

• The file FIT-OBJ.INP fits fit_obj's to the generated true Voigt.

The difference plot from FIT-PV.INP is in the order of 500 to 1000 times larger than the difference
plot from FIT-MORE.INP.

5.7 Stretching peaks

str… Examples

Peak Generation and "peak_type" 59

59 Peak Generation and "peak_type"

[stretch_pks E] STRETCH-PKS\STRETCH-1.INP

Refining 1000s of phases, where each has a peaks buffer that needs recalculation each itera-
tion of the refinement, can be time consuming; as in XRT-CT refinements. In fact, many peak
aberration parameters require the recalculation of the peaks buffer for each parameter deriv-
ative for each iteration of the refinement. The lor_fwhm and gauss_fwhm convolutions are two
such parameters and typical usage is via the following macros:

CS_G(@, 100)
CS_L(@, 100)

When the values of the lor_fwhm and gauss_fwhm parameters are approximately known, then
the shapes of the peaks can be approximated by stretching. For symmetric peaks the approx-
imation is almost exact; asymmetric peaks, peaks with asymmetric convolutions, are not exact
but if the values aren’t too far off optimal values then the approximation can be good. The ben-
efit of such an approximation is speed, where, using stretch_pks in the STRETCH-1.INP example
speeds up refinement by a factor of 4.1. The usage of stretch_pks is as follows:

CS_L(100) ‘ not refined
CS_G(100) ‘ not refined
stretch_pks @ 1 min 0.001 max 10

The limits of a stretched peak, x1_s and x2_s, in terms of the unstretched limits x1 and x2, and
the peak position Xo are:

x1_s = x0 – (Xo – x1) Get(stretch_pks)
x2_s = x0 + (x2 – Xo) Get(stretch_pks)

5.8 transform_x without recalculating patterns

[transform_x E] Examples

TRANSFORM_X\TPX.INP

The transform_x keyword stretches a calculated phase pattern to form a final phase calcu-
lated pattern without recalculating peaks or summing peaks to Ycalc. The following:

prm tpx 0 transform_x = X + tpx Sin(X Pi / 360);

is an approximation to:

prm tpx 0 th2_ffset = tpx Sin(X Pi/ 360);

This approximation is accurate when the change in transform_X is smooth and when its largest
value is in the order of what is expected from XRD-CT data. For two common strs residing in
different xdds, then if th2_offset were to be used then two th2_offsets would need to be de-
fined and the formation of the summation of the peaks to the calculated pattern performed
twice. transform_X on the other hand allows for the reuse of a common calculated str pattern.
A further description is given in section 6.

Reusing objects in large refinements 60

60 Reusing objects in large refinements

6. .. REUSING OBJECTS IN LARGE REFINEMENTS
lat_prms $name { … }
str_dets $name { … }
phase_dets $name { … }
use { … }

Examples

TEST_EXAMPLES\XRD-CT\XRD-CT-0.INP
TEST_EXAMPLES\XRD-CT\XRD-CT-1.INP

The keywords lat_prms, str_dets and phase_dets can be used to define a set of lattice param-
eters, structural details and phase details that can be used multiple times within phases with-
out recalculation of the corresponding item. The benefit is a reduction in memory usage and a
speed up in refinement that is substantial when 100s of 1000s of phases are present. Similarly,
derivatives of the common item are calculated once.

For a common phase with similar lattice parameters, then it is possible to use a commons set
of hkls. Similarly, if the structure factors of the two phases are the same but the lattice param-
eters are different (but similar) then it is also possible to use a common set of structure factors.
Absent the above keywords, the program automatically searches for common items in a global
manner but with restrictions. For example, strs with hkls that are not identical cannot use a
common str. However, defining the structure details in a str_dets object allows for a common
structure even when the normal set of hkls generated would be vastly different.

XRD-CT-0.INP is a two str and two xdd example that highlights the use of the above keywords.
It looks like:

' Change case_ to 0, 1
#prm case_ = 1;
iters 0
lam la 1 lo !lam 1 lg 0.3 ymin_on_ymax 0.001
str_dets s0 {
 space_group i41/amd:2
 site Zr x 0 y =3/4; z =1/8; occ Zr+4 1 beq !b1 1
 site Si x 0 y =1/4; z =3/8; occ Si 1 beq !b2 1
 site O x 0 y !y1 0.066 z !z1 0.1951 occ O-2 1 beq !b3 2
}
lat_prms l0 { Tetragonal(6, 4) }
lat_prms l1 { Tetragonal(5, 7) }

prm !lor_ = Constant(0.1 Rad lam) / Cos(Th);
phase_dets pd0 { prm !cs0 140 min 10 max 500 lor_fwhm = lor_ / cs0; }
phase_dets pd1 { prm !cs1 100 min 10 max 500 lor_fwhm = lor_ / cs1; }

prm o10 0.01 min -0.1 max 0.1
prm o20 0.02 min -0.1 max 0.1
prm o11 0.03 min -0.1 max 0.1
prm o21 0.04 min -0.1 max 0.1
phase_dets ze0 { transform_X = o10 + o20 X + X; }
phase_dets ze1 { transform_X = o11 + o21 X + X; }

yobs_eqn aac1.xy = 1; min 30 max 60 del 0.01
 out_sfn4_ycalc = "xrd-ct-00.sfn4";
 bkg @ 100 -20 10
 #if case_ == 0;
 str scale @ 1 load use { l0 s0 pd0 ze0 }
 #elseif case_ == 1;

Reusing objects in large refinements 61

61 Reusing objects in large refinements

 str scale @ 1 load use { l0 s0 pd0 ze0 }
 #endif

yobs_eqn aac2.xy = 1; min 10 max 60 del 0.01
 out_sfn4_ycalc = "xrd-ct-01.sfn4";
 bkg @ 100 -20 10
 #if case_ == 0;
 str scale @ 1 load use { l1 s0 pd1 ze1 }
 #elseif case_ == 1;
 str scale @ 1 load use { l1 s0 pd0 ze1 }
 #endif

In the above, there are two strs and two xdds . In a real-world example this could extended to
100s of 1000s of xdds and strs resulting in an INP file comprising millions of lines. It is therefore
efficient to define things once as is the case of lam. Modifying the preprocessor case_ #prm at
the top of the file demonstrates capabilities. The case_=1 scenario is for the following:

- Two xdds each with one str
- The two strs use a common str_dets resulting in only one set of hkls being generated

and on set of structure factor.
- The lattice parameters for the two strs are different and therefore two sets are used.
- The zero errors (transform_X) are different and therefore two sets used.
- The lor_fwhm peak shape convolutions (crystallite size) are different and therefore

two sets are used.

case_=1 is an unrealistic example where the lattice parameters and x-axis of the two xdds are
vastly different. The power of reusing object becomes apparent in a real-world sense where
lattice parameters, amongst similar structures, are expected to be more similar. Important
output from refinement for case_=1 is as follows:

Num data files: 2
Num hkl-sets/unique: 2 1
Num structure-factors-sets/unique: 2 1
Num m4_d2_inv unique: 1
Num peak buffers unique: 2
Num xo_ds unique: 2
Num bkg derivs unique: 2
Num transform_X/unique: 2 2
Num peak-shape-objects: 8
Num hkl_pk_dets/unique: 2 2
Num pk_sum_limits unique: 2

*** Warning: Lattice parameters not similar
 but using the same structure factors

 a 6 and 5
 b 6 and 5
 c 4 and 7
 al 90 and 90
 be 90 and 90
 ga 90 and 90

The unique items are shown in Red. Notice the warning which is due to the vastly different lat-
tice parameters. case_=2 sets the peak shapes to be the same for the two phase and the out-
put now looks like:

Reusing objects in large refinements 62

62 Reusing objects in large refinements

Num hkl-sets/unique: 2 1
Num peak buffers unique: 1
Num m4_d2_inv unique: 1
Num structure-factors-sets/unique: 2 1

Here we see one common peak buffer and thus only one is generated, and only derivatives for
its parameters are calculated. Also seen is that one set of hkls is generated. The mini-
mum/maximum x-axis values, used for the generation of the common hkls, corresponds to the
minimum/maximum values of the the start_X/finish_X and extra_X_left/extra_X_right of all the
common strs.

The example XRD-CT-1.INP refines on simulated data comprising 150,000 strs and 163,150 in-
dependent parameters. 20 iterations are completed in ~60s on an 8-core laptop. A few points
to note when running XRD-CT-1.INP:

- Turn off animated fitting in the GUI, it cannot cope with 2000 xdd files and 150,000 strs.

- Run first with “#define CREATE_” to create the simulated data. The data files are created
using the out_sfn4_ycalc keyword. This keyword outputs binary format files with a SFN4
extension. XY formats can also be outputted as well if desired.

- Do a first run with “#define SUBSET_” to see how things look (animated graphics can be
turned on here).

- Then remove the #define and turn off animated graphics.

- 3.1 Gbytes of memory is used.

Output from the refinement looks like:

TOPAS-64 Version 8.38 (c) 1992-2020 Alan A. Coelho
 Maximum number of threads 8
Time 0.25, INP file pre-processed
approximate_A_check_must_be_zero On
Loading xyz's for fm-3m from file C:\w\sg\fm-3m.sg
Num hkls generated for C:\w\sg\fm-3m.sg 50
Loading xyz's for fm3m from file C:\w\sg\fm3m.sg
Num hkls generated for C:\w\sg\fm3m.sg 55
Loading xyz's for i41/amd:2 from file C:\w\sg\i41oamdq2.sg
Num hkls generated for C:\w\sg\i41oamdq2.sg 313
Num hkl-sets/unique: 150000 3
Num peak buffers unique: 3
Num independent parameters: 163150
Num data files: 2000
Num m4_d2_inv unique: 3
Num xo_ds unique: 3000
Num bkg derivs unique: 1
Num transform_X/unique: 150000 75
Num structure-factors-sets/unique: 150000 3
Num peak-shape-objects: 600000
Num stretch_pks/unique: 150000 3000
Num hkl_pk_dets/unique: 150000 3000
Num phase Ycalcs/unique (ignoring transform_X): 150000 3000
Num phase Ycalcs/unique derivs (ignoring transform_X): 150000 3000
Num pk_sum_limits unique: 3000
Num equiv posns for centrosymmetric fm-3m: 192
Num equiv posns for centrosymmetric fm3m: 192
Num equiv posns for centrosymmetric i41/amd:2: 32

Reusing objects in large refinements 63

63 Reusing objects in large refinements

 0 Time 5.37 Rwp 58.064 0.000 MC 0.00 0
 1 Time 7.12 Rwp 50.740 -7.325 MC 0.00 0
 2 Time 11.90 Rwp 45.643 -5.096 MC 11.10 3
 3 Time 15.77 Rwp 45.507 -0.137 MC 115.50 1
 4 Time 19.61 Rwp 43.351 -2.155 MC 30.34 1
approximate_A_check_must_be_zero: non-zero Aij elements now static
 5 Time 23.53 Rwp 25.599 -17.752 MC 8.31 1
 6 Time 26.62 Rwp 24.143 -1.457 MC 30.92 2
 7 Time 29.22 Rwp 14.654 -9.488 MC 8.05 1
 8 Time 32.26 Rwp 14.560 -0.094 MC 269.97 2
 9 Time 34.86 Rwp 14.480 -0.080 MC 68.26 1
 10 Time 37.48 Rwp 13.241 -1.239 MC 17.30 1
 11 Time 40.14 Rwp 5.025 -8.216 MC 4.67 1
 12 Time 43.23 Rwp 4.814 -0.211 MC 19.50 2
 13 Time 45.90 Rwp 4.097 -0.718 MC 5.18 1
 14 Time 48.98 Rwp 4.045 -0.051 MC 18.59 2
 15 Time 51.65 Rwp 3.783 -0.262 MC 4.85 1
 16 Time 54.30 Rwp 3.557 -0.226 MC 1.72 1
 17 Time 56.93 Rwp 3.512 -0.044 MC 3.51 1
 18 Time 59.62 Rwp 3.464 -0.048 MC 14.20 1
 19 Time 62.27 Rwp 3.374 -0.090 MC 3.29 1
--- 62.270 seconds ---
File C:\w\test_examples\xrd-ct\xrd-ct-1.out updated
 with parameters corresponding to best Rwp

Note the numbers in red. This is a large refinement that would not be possible without reusing
objects and without the keyword approximate_A_check_must_be_zero. This refinement can-
not be tested against Version 7 as the number of hkls alone, 62,700,000, would exhaust much
of memory.

Objects reused are:

- hkls
- lattice parameters
- Ycalc
- Peak buffers
- Structure factors
- th2_offset
- transform_X
- stretch_pks
- gauss_fwhm
- and many other common arrays such as (Sin(Th)/Lam)^2.
- derivatives for common refined parameters.

Deconvolution 64

64 Deconvolution

7. .. DECONVOLUTION

[A0_matrix_is_constant]
[create_pks_name $a_name]
[create_pks_fn $fn_name]

Examples
TEST_EXAMPLES\DECONVOLUTION\

PBSO4-DECON.INP

The deconvolution method of aCoelho (2018) has been implemented; it uses three macros
found in TOPAS.INC: Deconvolution_Init, Deconvolution_Bkg_Penalty and Deconvolution_In-
tensity_Penalty. The method refines on linear parameters only; these linear parameters are
peak intensity and background parameters; their derivatives are unchanging and hence the A0
matrix is unchanging. The keyword A0_matrix_is_constant informs the program that only lin-
ear parameters are being refined and hence the A0 matrix is calculated only once. Attempts to
use A0_matrix_is_constant with quick_refine, approximate_A, chi2 or with refinement of non-
linear parameters results in an exception being thrown.

create_pks_name is a xo_Is dependent keyword that creates a peak at each step along the x-
axis with peak intensity parameter names starting with the string $a_name. Peaks are not cre-
ated if peaks already exist for the xo_Is phase. If the ‘$’ character is placed immediately after
create_pks_name and if create_pks_name is within a macro then the output from cre-
ate_pks_name is placed after the macro. create_pks_fn additionally appends a penalty to
each peak with the penalty being written in terms of a function called fn_name. The OUT file is
updated with peaks which looks something like:

xo 5.00 I a25_ 0.00217` penalty = dfn(5,a25_,a26_);
xo 5.02 I a26_ 0.00000` penalty = dfn(5.02,a26_,a27_);
xo 5.04 I a27_ 0.00000` penalty = dfn(5.04,a27_,a28_);

The dfn function takes arguments of x-axis position of the peak and two intensity parameter
names, one at the x-axis position and the other at the next x-axis position. These keywords and
functions are used in macros in the following manner:

Deconvolution_Init(0.5)
xdd …

Deconvolution_Bkg_Penalty(0.5)
xo_Is

Deconvolution_Intensity_Penalty(a, afn)

The deconvolution process comprises three separate refinement runs. 1) Fitting the peaks to
the diffraction pattern with peak shapes fixed to expected peak shapes, 2) creating a calcu-
lated pattern with a chosen peak shape, typically a peak shape comprising specimen contri-
butions, and 3) a final run to produce a deconvoluted pattern with noise. The PBSO4-DE-
CON.INP example is ready to run, it can be used as a template for other deconvolution pro-
cesses, it is defined as:

#define DO_REFINEMENT_ ' Step 1
‘#define DO_SPECIMEN_OUT_ ' Step 2
‘#define DO_FINAL_DECON_ ' Step 3
macro Data_File { Pbso4 }
#ifdef DO_FINAL_DECON_

Deconvolution 65

65 Deconvolution

 RAW(..\##Data_File) ' load for comparison purposes
 xdd Data_File##-decon-specimen.xy
 x_calculation_step 0.025
 user_y d1 Data_File##-decon-specimen.xy
 user_y d2 Data_File##-diff.xy
 fit_obj = d1 + d2;
 Out_X_Ycalc(Data_File##-decon-final.xy) ‘ Final deconvoluted pattern
#else
 Deconvolution_Init(0.5)
 RAW(..\##Data_File)
 start_X 15
 bkg @ 0 0 0 0 0 0 0
 Deconvolution_Bkg_Penalty(0.5)
 ‘LP_Factor(17) ‘ Do not include when doing deconvolution
 CS_L(262.73494)
 Strain_L(0.03785)
 #ifdef DO_SPECIMEN_OUT_
 iters 0
 CuKa1(0.0001)
 Out_X_Ycalc(Data_File##-decon-specimen.xy)
 #else ' DO_REFINEMENT_
 Out_X_Difference(Data_File##-diff.xy)
 CuKa5(0.0001)
 Radius(173)
 Full_Axial_Model(10, 10, 10, 4.13679, 4.13679)
 Divergence(1)
 Slit_Width(0.2)
 #endif
 xo_Is
 Deconvolution_Intensity_Penalty(a, dfn)

 #endif

Background should be less than all observed data and it should be graphically inspected dur-
ing step 1. Background can be reduced by decreasing the c parameter of the Deconvolu-
tion_Bkg_Penalty macro; this parameter can range from 0.05 to 1. If the bases of the peaks are
not matching Yobs then the background is still too high. Step 1 and 2 produces output XY files
which are then used in step 3. The exclusion of LP_Factor, and similar peak scaling parame-
ters, is important as peak intensities are used in a penalty inside the Deconvolution_Inten-
sity_Penalty macro. The deconvolution process can be used for all types of data including neu-
tron TOF; step (1) takes approximately 10 to 30 seconds on present laptops; steps (2) and (3)
takes a trivial amount of time (< 1s). The deconvolution macros are as follows:

macro Deconvolution_Init(c) {
process_times
A0_matrix_is_constant ‘ All parameters are linear
penalties_weighting_K1 = c; ‘ A value of 0.5 seems sufficient
save_best_chi2 ‘ We want best Chi2; not best Rwp
chi2_convergence_criteria 1e-5
continue_after_convergence ‘ ~100 iterations is typically sufficient (~20s)
pen_weight 1 ‘ Override the default

}
macro Deconvolution_Intensity_Penalty(i_name, fn_name) {

fn fn_name(x, a0, a1) = (a0 - a1)^2 / ((a0 + a1) Yobs_at(x) + 1e-6);
default_I_attributes 1e-6 min 0 val_on_continue = Val Rand(0.99, 1.01);
create_pks_fn fn_name

Deconvolution 66

66 Deconvolution

create_pks_name $ i_name
}
macro Deconvolution_Bkg_Penalty(& c, & w_min) {

xdd_sum #m_unique pen = (Yobs - Get(bkg))^2 / Max(Get(bkg) Yobs, w_min^2);
penalty = pen c;

}
macro Deconvolution_Bkg_Penalty(& c) { Deconvolution_Bkg_Penalty(c, 1) }

pen_weight over-rides the default; the default works but with slower convergence. Note, both
the peak intensity and Bkg penalties are Yobs scale invariant where scaling of Yobs does not
change the magnitude of the penalties relative to 𝜒0

2. Yobs_at is a new function that returns
the value of Yobs at x. w_min in the Deconvolution_Bkg_Penalty macro allows for the setting
of the expected minimum of Yobs*Bkg; a value of 1 for counting statistics. For XYE files, where
Yobs is small and where SigmaYobs is used (tof data for example), then w_min should be re-
duced.

7.1 Deconvolution – Simulated pattern

A simulated pattern was created with noise using SIM-CREATE.INP and the instrument contri-
bution deconvoluted using SIM-DECON.INP; the latter INP file looks like:

/* Three runs to produce the deconvoluted pattern.
 The name of the final deconvoluted pattern is:

 pbso4-decon-final.xy

 Define one at a time in the following:

 #define DO_REFINEMENT_ ‘ Run 1
 #define DO_SPECIMEN_OUT_ ‘ Run 2
 #define DO_FINAL_DECON_ ‘ Run 3
*/
#define DO_REFINEMENT_ ' Step 1
‘#define DO_SPECIMEN_OUT_ ' Step 2
‘#define DO_FINAL_DECON_ ' Step 3, Clear the GUI first

macro Data_File { Sim }
#ifdef DO_FINAL_DECON_
 xdd Data_File##-calc-rand.xy ' load for comparision purposes
 xdd Data_File##-calc-narrow.xy
 user_y d1 Data_File##-decon-specimen.xy
 user_y d2 Data_File##-diff.xy
 fit_obj = d1 + d2;
 Out_X_Ycalc(Data_File##-decon-final.xy)
#else
 Deconvolution_Init(0.5)
 xdd Data_File##-calc-rand.xy
 bkg @ 259.381081 89.8339877 31.6429117 -34.4743462
 34.3097757 -55.7270435 30.631573
 Deconvolution_Bkg_Penalty(0.1)

 /* Specimen */
 CS_L(300)
 CS_G(300)
 Strain_L(0.05)

Deconvolution 67

67 Deconvolution

 Strain_G(0.05)

 #ifdef DO_SPECIMEN_OUT_
 iters 0
 CuKa1(0.001)
 Out_X_Ycalc(Data_File##-decon-specimen.xy)
 #else ' DO_REFINEMENT_
 num_cycles 20
 Out_X_Difference(Data_File##-diff.xy)

 /* Instrument */
 CuKa2(0.001)
 Radius(217)
 Full_Axial_Model(12, 12, 12, 2.3, 7)
 Divergence(1)
 Slit_Width(0.1)
 Absorption(60)
 #endif
 xo_Is
 Deconvolution_Intensity_Penalty(a, dfn)
#endif

The following figure is the deconvoluted pattern (green line, bottom plot) compared with the
expected deconvoluted pattern (red line on top of green line). The top plot (blue line) is the
original simulated pattern with noise and without noise (red line on top of blue line).

(Counts)1/2

Deconvolution 68

68 Deconvolution

Parameter errors determined from refinement using the deconvoluted pattern are almost
identical to errors produced using the original pattern, see aCoelho (2018).

2()

PDF-Generation 69

69 PDF-Generation

8. .. PDF-GENERATION

[xdd...]
[rebin_with_dx_of !E]
[pdf_generate {

[dr !E]
[r_max !E]
[gr_sst_file = “File”;]
[hat !E [num_hats !E]
[gr_to_fq !E]

}]

Examples
TEST_EXAMPLES\PDF\GENERATE\

FULLERENE\DECON.INP
LIFEPO4\DECON.INP
SILICON\DECON.INP
TUNGSTEN\DECON.INP

PDF generation comprises an inverse Sine transform operating on an ideal diffraction pattern
where background is absent, atomic scattering factors are constant, and 2 and peak shapes
symmetric. The task therefore becomes one of correcting real data such that it matches an
ideal pattern as closely as possible. The corrections include determining a background,
atomic scattering factors (if X-ray data), removing Lorentz polarization and removing asym-
metry from peak shapes; for details see Coelho et al., 2021. To generate the PDF, a deconvo-
lution process similar-to that described in section 7 is used. It allows for corrections in recip-
rocal space of peak asymmetry, instrument and emission profile aberrations, Lorentz polari-
zation and atomic scattering factors corrections. The process comprises two operations de-
scribed in a single INP file; these operations are:

• 0) Fit to the reciprocal space diffraction pattern - (Operation 0)

• 1) Generate G(r) - (Operation 1)

• 1.0) Generate ideal pattern Ideal (2) from the parameters determined in step 0.

• 1.1) Convert Ideal (2) to Q space to form Ideal(Q).

• 1.2) Fit a polynomial to Ideal(Q) and save F(Q) = Ideal(Q) – Poly)

• 1.3) Generate G(r) from F(Q)

Each operation requires running the INP file once. Steps 1.0 to 1.3 of operation 1 is performed
with num_runs set to 4.

8.1 PDF-Generating - LiFePO4

Fitting to the pattern, operation 0, follows the deconvolution process of aCoelho (2018). Lattice
parameters are not required. A peak is laid down at each data point of the pattern together with
a background and appropriate penalty functions. Approximate peak shapes from a preliminary
peak fitting analysis, using a ‘standard’ for example, is recommended; once determined peak
shapes are not refined. The data entry part of a typical INP file (see LIFEPO4\ DECON.INP for
example) is as follows:

Include_PDF_Generate
'--
' START USER INPUT SECTION
'--
macro Data_File { LFP_0-8Kcap_AgFGM_2x4soll_Eiger1D_8h.xy }

PDF-Generation 70

70 PDF-Generation

macro Capillary_Scan { capillary.xy }
macro Capillary_Rebin { 0.1 } ' Smooth the capillary scan. Zero means no smoothing.
#prm operation = 0; ' Set to 0 to fit to reciprocal space data
 ' Set to 1 to generate F(Q) and G(r)
 ' Set to 2 to fit structure to G(r)
#prm use_narrow_peak_shape = 1; ' A 0 means use full peak shapes in generating G(r)
'--
' Inputs for reciprocal space fit, operation = 0
macro & Average_f { f0_Li + f0_Fe + f0_P + 4 f0_O } ' formula of unit cell
#prm lab_no_monochromator = 1; ' Set to 1 if using Laboratory instrument.
#prm use_Xo_Is_phase = 1; ' Set to 0 if not fitting peaks
#prm use_bkg_penalty = 1;
#prm use_simple_bkg_penalty = 1; ' Set to 1 if counting statistics is not right,
 ' or, maybe when there's Fluorescence.
macro & Bkg_Weighting { 1 }
macro & Intensity_Penalty_Weighting { 1 }
macro & Scale_Peaks { 1 } ' Useful if capillary absorption is inhibiting fitting.
macro & Scale_Yobs_By { 1 } ' Useful if data does not obey counting statistics.
prm pc0 1 ‘ Poly_Capillary coefficients; comment out if
prm pc1 0 ' not using Capillary as background.
inp_text fluorescence_bkg
 {
 bkg @ 3.49160163` -0.96682842` 0.292687899`
 }
inp_text fit_extra
 {
 penalty = 10000 (Bkg_at(X2) + (pc0 + pc1) Value_at_X(cap_, X2) - Yobs_at(X2))^2;
 }
macro Start_X { 2.4 }
macro Finish_X { 103 }
macro Step_X { 0.02 } ' Set to zero to use measured step size.
 ' Set to non-zero if scale_yobs_by is used.
 ' Set to non-zero if unequal x-axis steps.
‘--
' Inputs for generating F(Q), operation = 1
#prm poly_fq = 7; ' Number of parameters for Poly when fitting Poly to F(Q).
 ' View F(Q) plot, it needs to look right.
macro & Qmin { 0.1 }
macro & Qmax { 17.5 }
macro & Soper_Lorch_Constant { 0 } ' best not to use
macro & Exp_Constant { 0 } ' best not to use
macro & Lorch_Constant { 0 } ' best not to use
inp_text fq_poly
 {
 bkg @ 0 0 0 0 0 0 0 0 0
 }
macro FQ_Bkg_Penalty
 {
 weighting = If(X > (X2 - 1), 10, 1); ' Weigh the F(Q) data more at Qmax
 penalty = Bkg_at(X1)^2; ' Restrain F(Q=0) to 0
 }
‘--
' Inputs for generating G(r) from F(Q), operation = 1
macro R_Max { 100 }
macro dR { 0.01 }
macro Num_Hats { 3 } ' Best smoothing function for speed and accuracy
macro & Hat_Size { 4.4934 / Qmax }
‘--

PDF-Generation 71

71 PDF-Generation

' Reciprocal space peak details, operation = 0
macro Full_Emmision_Profile
 {
 lam ymin_on_ymax 0.001
 la 1 lo 0.5609 lg 1e-6
 la 0.55150 lo 0.5649441 lg 1e-6
 }
macro Deconvoluted_Emmision_Profile
 {
 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 }
macro Full_Peak_Shape_Specimen
 {
 CS_G(, 70)
 CS_L(, 45)
 Strain_L(, 0.042)
 Strain_G(, 0.42)
 }
macro Full_Peak_Shape
 {
 Full_Peak_Shape_Specimen
 Full_Axial_Model(10,10,10, 2.3, 5.73430)
 }
macro Deconvoluted_Peak_Shape
 {
 Deconvoluted_Emmision_Profile
 #if (use_Xo_Is_phase == 0)
 ' Using (Yobs - background); ie. no peak shape
 #elseif (use_narrow_peak_shape)
 ' Use Narrow peak shape
 ZE(, -0.00730929318) ‘ Set to negative of Rietveld fit
 gauss_fwhm 0.05
 #else ‘ Use Full peak shape specimen
 Full_Peak_Shape_Specimen
 ZE(, -0.00730929318) ‘ Set to negative of Rietveld fit
 #endif
 }
macro & LP_Factor_
 {
 #if (lab_no_monochromator)
 (1 + Cos(X Pi/ 180)^2)
 #endif
 1 / (Sin(X Pi/360)^2 Cos(X Pi/360)) ' Lorentz factor
 }
'--
' END USER INPUT SECTION
'--
Include_PDF_Generate_Common
'--
#if (And(use_Xo_Is_phase, Run_Number == 0, Or(fit_to_data, generate_fq_gr_from_fit)))
 xo_Is
 PDF_Generation_Intensity_Penalty(a,dfn, Intensity_Penalty_Weighting, Scale_Peaks)
#endif
'--

Input is required for data such as the name of the data files etc… It is best to create a new
directory for each data file. The PDF-GENERATE.INC file, included using the

PDF-Generation 72

72 PDF-Generation

Include_PDF_Generate macro, contains PDF generation specific macros. Capillary_Scan is
the name of the file corresponding to a scan of the empty capillary sample holder. Typically,
the capillary scan is collected in a short time leading to poor counting statistics; Capillary_Re-
bin can therefore be used to smooth the capillary scan. Setting the #prm called operation to 1
instructs the program to perform the fitting process. Setting use_narrow_peak_shape to 1 re-
sult in narrow peaks being used in the generation of the Ideal(2) (operation 1.0); this removes
peak broadening as a function of 2.

8.1.1 Operation 0 – Fitting peaks to the diffraction pattern

If use_Xo_Is_phase=0 then no peak fitting is performed and hence no deconvolution; the ideal
pattern is created using (Yobs – Ycalc)/ (LP_Factor <f>), where Ycalc in this case is the back-
ground function. Also, use_simple_bkg_penalty should also be set to 1. When
use_Xo_Is_phase=1, peaks are fitted. The program internally creates peaks and places them
at the position of the xo_Is phase. lab_no_monochromator=1 instructs the program that the
data is from a Laboratory instrument without a monochromator. Background is described as
follows:

Background = Poly_Capillary * Capillary_Scan + Poly_Fluorescence

Poly_Capillary is a 1st order polynomial with coefficients defined by the pc0 and pc1 parame-
ters. Poly_Fluorescence is also a nth order Chebyshev polynomial with coefficients defined by
the user at the inp_text fluorescence_bkg {} construct; set this construct to blank when not
using. LiFePO4 fluoresces, and its best to use the smallest number of bkg parameters whilst
producing a good background fit. In the case of LiFePO4, the high angle peaks seem to vanish.
This means that the background should be almost equal to Yobs at the highest angle X2. Such
a condition can be enforced using a penalty as shown in the inp_text called fit_extra. The pen-
alty describes the following:

(Poly_Capillary(X2) * Capillary_Scan(X2) + Poly_Fluorescence(X2) – Yobs_at(X2))2

X2 is the reserved parameter name corresponding to the end of the diffraction pattern.
Poly_Capillary at X2 is simply (pc0 + pc1), see the X0_ macro in PDF-GENERATE_COMMON.INC,
and Poly_Fluorescence(X2) corresponds to Bkg_at(X2). The penalty therefore looks like:

inp_text fit_extra
 {
 penalty = 10000 (Bkg_at(X2) + (pc0 + pc1) Value_at_X(cap_, X2) - Yobs_at(X2))^2;
 }

The fit for LiFePO4 looks like:

PDF-Generation 73

73 PDF-Generation

Notice the display of the background line as well as the small difference plot. When rerunning,
operation=0, the peaks at the xo_Is phase is not recreated if already present. It may be neces-
sary, therefore, to delete the peaks at the xo_Is phase when rerunning operation=0. When
use_simple_bkg_penalty=0, the full background penalty is used which relies on counting sta-
tistics. For data that does not obey counting statistics, the macros Scale_Yobs_By can be used
to scale the observed diffraction pattern. This scaling is performed using the user_y keyword
as follows:

user_y data_file Data_File
yobs_eqn data.sst = data_file Scale_Yobs_By;

min = Start_X; max = Finish_X; del = Step_X;

Note, user_y can also be a function of the reserved parameter X. The input created for the Ker-
nel can be viewed in TOPAS.LOG.

8.1.2 Operation 1 – Generation G(r) from the fitted peaks

The Average_f macro is used to calculate the average atomic scattering factor <f> for operation
1.0. For X-ray data, a rough estimate of the atomic species is helpful; for neutron data an esti-
mate is not required. Applying smoothing functions on F(Q) such as the Lorch and Soper-Lorch
functions is not recommended. Instead, applying three hat convolutions directly to G(r) is
faster and more accurate. At operation 1.1 the ideal pattern is converted to Q space. Operation
1.2 generates F(Q) by fitting a polynomial to Ideal(Q) where:

F(Q) = Ideal(Q) – Poly_FQ

fq_poly describes Poly_FQ using the Chebyshev polynomial of bkg; the optimum number of
coefficients is difficult to determine automatically. Its best to inspect the plots produced by
operation 1; these are generated and loaded into the GUI and, using the GUI-Tiling option,
looks like:

2Th Degrees

10080604020

C
o

u
n

ts

140

120

100

80

60

40

20

0

PDF-Generation 74

74 PDF-Generation

Changing fq_poly and rerunning operation 1 updates the four plots; this updating is achieved
using the keyword gui_reload. Using the structure of LiFePO4, the generated G(r) can be fitted-
to by setting operation=2. With use_narrow_peak_shape=0 we get:

The grey line at the center of the plot is a correction added to the calculated G(r) using:

fit_obj = a1 Cos(a2 X + a3) / X;

If this grey line is significant in intensity, then the value of F(Q=0) is incorrect. Controlling the
behaviour of F(Q) at the start and end of the Q range can be done from the FQ_Bkg_Penalty
macro. For example, F(Q=0)=0 can be set using the following penalty:

r (Angstroms)

10080604020

G
(r

)
(a

.u
.)

0.025

0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

-0.025

For tiling of plots

PDF-Generation 75

75 PDF-Generation

penalty = Bkg_at(X1)^2;

For operation 1; intermediate pre-processed text fed to the kernel can be sent to TOPAS.LOG
(or TC.LOG) for viewing by setting suspend_writing_to_log_file to 0. For the current example,
TOPAS.LOG for the operation 1.0 part is as follows (comments added):

iters 0

yobs_eqn aac.sst = 1; min 0.01 max = 103; del 0.0025
 gui_ignore
 Out_XDD_SST(decon.sst) ‘ Not expanded for clarity
 ‘ Output Ycalc / (polarization * <f>)
 = Ycalc / (((1 + Cos(X 3.14159265358979/ 180)^2) 1 / (Sin(X 3.14159265358979/360)^2

Cos(X 3.14159265358979/360))) (f0__(
0.974637,0.158472,0.811855,0.262416,0.790108,0.002542,4.334946,0.342451,97.102966,201
.363831,1.409234) + f0__(12.311098,1.876623,3.066177,2.070451,6.975185,-
0.304931,5.009415,0.014461,18.743040,82.767876,0.346506) + f0__(
1.950541,4.146930,1.494560,1.522042,5.729711,0.155233,0.908139,27.044952,0.071280,67.
520187,1.981173) + 4 f0__(
2.960427,2.508818,0.637853,0.722838,1.142756,0.027014,14.182259,5.936858,0.112726,34.
958481,0.390240))^2);

 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 th2_offset = (-0.00730929318);
 gauss_fwhm 0.05 ‘ Use narrow deconvoluted peak
 xo_Is
 extra_X_left = Max(X1 - Max(X1 - 1, 0.1), 0);
 extra_X_right = Max(Min(X2 + 1, 179.9) - X2, 0);
 fn dfn (x, a0, a1) = (a0 - a1)^2 / Max(a0 + a1, 1e-6);
 default_I_attributes 1e-6 min 0 val_on_continue = Val Rand(0.5, 2) + 1e-4;
 create_pks_fn dfn create_pks_name $ a
 xo 1.40009871 I a50_ 0.0178524321`
 xo 1.42009871 I a50_ 0.0178524321`
 xo 1.44009871 I a50_ 0.0178524321`
 …

The actual generation of G(r) occurs when Run_Number = 3; its INP text looks like:

 iters 0
 xdd fq.sst
 gui_reload
 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 rebin_with_dx_of 0.001
 pdf_generate {
 dr = 0.01;
 r_max = 100;
 gr_sst_file = "gr";
 hat = 4.4934 / (17.5); num_hats = 3;
 }

8.1.3 Correcting the PDF due to a zero error in reciprocal space

A zero-error added to peak positions in reciprocal can be subtracted from the deconvoluted
pattern of operation 1.0. Thus, a zero-error determined from fitting to a standard in reciprocal
space needs to be subtracted from the deconvoluted pattern from within the Deconvo-
luted_Peak_Shape macro.

PDF-Generation 76

76 PDF-Generation

8.1.4 Generating F(Q) from G(r) - gr_to_fq

The LIFEPO4\GR-TO-FQ.INP file creates G(r) from an F(Q) file at Run_Number 0, then in
Run_Number 1 it uses the newly created G(r) to reproduce the original F(Q) using gr_to_fq. The
INP file is as follows:

num_runs 3
#if (Run_Number == 0)
 xdd fq-original.sst
 rebin_with_dx_of 0.005
 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 pdf_generate {
 dr = 0.01;
 r_max = 300;
 gr_sst_file = "gr-from-fq";
 }
#elseif (Run_Number == 1)
 xdd gr-from-fq.sst
 gui_ignore
 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 pdf_generate {
 dr = 0.00125;
 r_max = 17.5;
 gr_sst_file = "fq-from-gr";
 gr_to_fq 1
 }
#elseif (Run_Number == 2)
 xdd fq.sst
 rebin_with_dx_of 0.01
 user_y fq_from_gr fq-from-gr.sst

 prm a 1 min 1e-6
 fit_obj = fq_from_gr a;
#endif

Run_Number 3 fits the newly created F(Q) to the original F(Q); the result showing the repro-
duced F(Q) (in red) and the original F(Q) (in blue) has a small difference plot as seen in the
following:

PDF-Generation 77

77 PDF-Generation

8.1.5 PDF-Generation - Fullerene

In this example G(r) from TOPAS is compared to G(r) from GudrunX for Fullerene. The INP file
is:

Include_PDF_Generate
'--
' START USER INPUT SECTION
'--
macro Data_File { i15-1-20401_tth_det2_0.xy }
macro Capillary_Scan { i15-1-20398_tth_det2_0.xy}
macro Capillary_Rebin { 0 } ' Smooth the capillary scan. Zero means no smoothing
#prm operation = 1; ' Set to 0 to fit to reciprocal space data
 ' Set to 1 generate F(Q) and G(r)
 ' Set to 2 to fit structure to G(r)

#prm use_narrow_peak_shape = 1; ' Use narrow peak shapes in the generating G(r)
'--
' Inputs for reciprocal space fit, operation == 0
#prm lab_no_monochromator = 0; ' Set to 1 if using Laboratory instrument
#prm use_Xo_Is_phase = 0; ' Set to 0 if not fitting peaks
#prm use_bkg_penalty = 1;
#prm use_simple_bkg_penalty = 1; ' Set to 1 if counting statistics is not right
 ' or maybe when there's Fluorescence
macro & Bkg_Weighting { 1 }
macro & Intensity_Penalty_Weighting { 1 }
macro & Scale_Peaks { 1 } ' Useful if capillary absorption is inhibiting fitting.
macro & Scale_Yobs_By { 1 } ' Useful if data does not obey counting statistics.

prm pc0 1.09673044` ‘ Multiplies Capillary by (pc0 + pc1 x0)
prm pc1 0.146927936 ' Comment out if not using Capillary as background.
inp_text fluorescence_bkg { }
inp_text fit_extra
 {
 penalty = 10000 (Bkg_at(X2) + (pc0 + pc1) Value_at_X(cap_, X2) - Yobs_at(X2))^2;
 }
macro Start_X { 0.6 }
macro Finish_X { 59.9 }

Q

161412108642

F
(Q

)
(a

.u
.)

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

-0.01

PDF-Generation 78

78 PDF-Generation

macro Step_X { 0.02 } ' Set to 0 to use measured step size.
 ' Set to non-zero if scale_yobs_by is use.
 ' Set to non-zero if unequal x-axis.
'--
' Input for generating F(Q) - operation == 1
macro & Average_f { f0_C }
macro & Qmin { 0.5 }
macro & Qmax { 25 }
macro & Soper_Lorch_Constant { 1.1 } ' Used for comparison purposes
macro & Exp_Constant { 0 }
macro & Lorch_Constant { 0 }
inp_text fq_poly
 {
 bkg @ 0 0 0 0 0 0 0 0 0
 }
macro FQ_Bkg_Penalty { }
'--
' Inputs for generating G(r) from F(Q), operation == 1
macro R_Max { 50 }
macro dR { 0.01 }
macro Num_Hats { 0 } ' Best smoothing funcion for speed and accuracy
macro & Hat_Size { 4.4934 / Qmax }
'--
' Reciprocal space peak details, operation == 0
macro Full_Emmision_Profile
 {
 lam ymin_on_ymax 0.0005 la 1 lo 0.161669 lg 1e-6
 }
macro Deconvoluted_Emmision_Profile
 {
 Full_Emmision_Profile
 }
macro Full_Peak_Shape_Specimen { }
macro Full_Peak_Shape { }
macro Deconvoluted_Peak_Shape
 {
 Deconvoluted_Emmision_Profile
 #if (use_Xo_Is_phase == 0)
 ' Using (Yobs - background); ie. no peak shape
 #elseif (use_narrow_peak_shape)
 ' Use Narrow peak shape
 gauss_fwhm 0.05
 #else
 ' Use Full peak shape
 Full_Peak_Shape_Specimen
 #endif
 }
macro & LP_Factor_
 {
 #if (lab_no_monochromator) (1 + Cos(X Pi/ 180)^2) #endif
 1 / (Sin(X Pi/360)^2 Cos(X Pi/360)) ' Lorentz factor
 }
'--
' END USER INPUT SECTION
'--
Include_PDF_Generate_Common
'--

PDF-Generation 79

79 PDF-Generation

In this example, peaks are not fitted and as such use_Xo_Is_phase=0 and use_sim-
ple_bkg_penalty=1. fluorescence_bkg is left empty as fluorescence is not present. fit_extra is
used where a penalty is applied equating the bkg_tot to the Yobs value at the end of the dif-
fraction pattern. Note, the use of the Value_at_X function. bkg_tot in this example comprises
a fit_obj which corresponds to (pc0 + pc1 X)*Capillary. In this example the Soper_Lorch_Con-
stant was used to match GudrunX. G(r) generated for TOPAS (in red) and GudrunX (in Blue) is
as follows:

r (Angstroms)

50454035302520151050

G
(r

)
(a

.u
.)

5

4

3

2

1

0

-1

-2

-3

PDF refinement 80

80 PDF refinement

9. .. PDF REFINEMENT

[xdd]…
[pdf_data]
[scale_phase_X1 E]…
[fit_obj1 E]…
[start_X #] [finish_X #]
[rebin_with_dx_of1 !E]

[rebin_start_x_at !E]
[weighting !E]
[Tpdf_convolute]…
[str]…

[scale_phase_X1 E]…
[scale E]
[view_structure]
[rigid]…
[occ_merge $sites]…
[pdf_scale_simple]
[pdf_zero1 E]
[pdf_ymin_on_ymax 0.001]
[pdf_info]
[Tpdf_convolute]…
[pdf_for_pairs $sites_1 $sites_2]…

[pdf_only_eq_0]
[pdf_gauss_fwhm1 E]
[Tpdf_convolute]...

 [pdf_partial_1 $sites]
 [pdf_partial_2 $sites]
 [pdf_partial_when !E1]

Tpdf_convolute
[pdf_convolute1 E]...

[min_X !E]
[max_X !E]
[convolute_X_recal !E]

Examples

INP files

TEST_EXAMPLES\PDF\
BEQ-2.INP
BEQ-2-CREATE.INP
BEQ-3.INP
BEQ-3-CREATE.INP
PDF-1.INP
PDF-2.INP
ALVO4\

STRUCTURE-SOLUTION-CREATE.INP
STRUCTURE-SOLUTION.INP
RIGID.INP

OCC-MERGE-PBSO4\
CREATE.INP
OCC-MERGE-TEST.INP
OCC-MERGE.INP

Data files

TEST_EXAMPLES\PDF\
BEQ-2.XY
BEQ-3.XY
ALVO4\ALVO4.XY
OCC-MERGE-PBSO4\PBSO4.XY

1) Can be a function of the reserved parameter name X; X corresponds to r for PDF data.

PDF refinement as implemented operates at speed (Coelho, 2015). PDF patterns are treated
as an xdd where most xdd keywords can be used. PDF patterns can be refined simultaneously
with other types of xdd patterns where the latter can comprise x-ray dependent or x-ray inde-
pendent phases. Penalties, restraints and keywords such as rigid, atomic_interaction,
sites_geometry, sites_distance etc. can all be used. pdf_data tells the program that the data
set is of G(r) type. Let’s write G(r) as:

G(r) = s1 S(r) / r – s2 r

PDF refinement 81

81 PDF refinement

where r corresponds to the x-axis, s1 and s2 are constants and S(r) are the pairs. pdf_scale_sim-
ple tells the program to calculate S(r)/(Np r) only. pdf_ymin_on_ymax defines the min/max
value for the PDF Gaussians in-regards-to the x-axis extents of the Gaussians; the default
value of 0.001 in typically sufficient. pdf_for_pairs can be used to select site pairs using the
site name, for example:

pdf_for_pairs "V* Al* !O2" *

The ‘!’ character excludes the O2 sequence from the wild card string, see section 20.26. Mul-
tiple pdf_for_pairs can be defined. pdf_only_eq_0 informs the parent pdf_for_pairs that only
equivalent position 0 is to be considered. pdf_gauss_fwhm is used to write the width equation
for the pairs selected by pdf_for_pairs. If all pairs are described by pdf_for_pairs then the as-
sociated beq’s are not used; the user is informed of unused beq’s. Consider the following ab-
breviated INP segment:

site Al1 ... beq 1
site O1 ... beq 1
pdf_for_pairs Al1 Al1 pdf_only_eq_0 pdf_gauss_fwhm 0.1 ‘ Line A
pdf_for_pairs Al1 O1 pdf_only_eq_0 pdf_gauss_fwhm 0.2 ‘ Line B
pdf_for_pairs Al1 O1 pdf_gauss_fwhm 0.3 ‘ Line C

The FWHMs of the interactions are as follows:

Al1-O1 : Interactions for equivalent-position-0 described using Line B.

Al1-O1 : Interactions excluding equivalent-position-0 described using Line C.

O1-O1 : Interactions described using beq’s.

pdf_info displays the interactions in matrix form; for the above INP segment we have:

pdf_info
{

- = No pdf_for_pairs defined hence beq’s used
0 = pdf_for_pairs defined with pdf_only_eq_0
1 = pdf_for_pairs defined without pdf_only_eq_0
2 = two pdf_for_pairs defined, one with and one without pdf_only_eq_0

 Al1 -2
 O1 2-

}

The matrix is in purple. pdf_for_pairs together with beq defaults offer great flexibility in describ-
ing peak widths. See PDF-1.INP, PDF-2.INP, BEQ-3.INP. scale_phase_X can be used to describe
Gaussian dampening, for example:

prm damp_fwhm 50 min 1e-6 max 200
prm damp = Gauss(0, damp_fwhm);
scale_phase_X = damp;

PDF refinement 82

82 PDF refinement

9.1 Displaying partial PDFs

Partial PDFs can be dynamically displayed each iteration of refinement or at the end of refine-
ment. A dummy structure mechanism is used as follows:

str…
‘ main PDF phase

 dummy_str
 phase_name "Al1 Al2 O1 O2 O3"
 pdf_partial_1 "Al1 Al2 O1 O2 O3"
 pdf_partial_2 "Al1 Al2 O1 O2 O3"

pdf_partial_when 0 ' Only at end of refinement
 dummy_str
 phase_name "V1 O4"
 pdf_partial_1 "V1 O4"

 pdf_partial_2 "V1 O4"
pdf_partial_when = Mod(Cycle_Iter, 2);

pdf_partial_1 and pdf_partial_2 are site identifying strings (see section 20.27) which can in-
clude the ‘*’ wild card character and the negation character ‘!’. pdf_partial_when determines
when to do the partial pdf calculation; the default value is non-zero which means the calcula-
tion is performed each iteration. A value of zero results in the calculation being performed at
the end of refinement. The BEQ-2.INP example demonstrates this with the resulting GUI plot
looking like:

9.2 pdf_only_eq_0

Consider the space group P-1 with two equivalent positions, E0 and E1:

E0) x, y, z
E1) -x, -y, -z

The PDF comprises interactions between all atomic pairs. From symmetry, only interactions
between E0 and the rest of the atoms are calculated. For a two-atom structure in P-1, with
atoms A and B, the PDF comprises unique interactions between the following pairs:

Partical PDFs (BEQ-2.INP)

2Th Degrees

161412108642

C
o

u
n

ts

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

AlVO4 0.00 %

Al1 Al2 O1 O2 O3 0.00 %

V1 O4 0.00 %

PDF refinement 83

83 PDF refinement

A0-A0, A0-A1, A0-B0, A0-B1, B0-B0, B0-B1, B0-A1

Each interaction can be defined separately using a combination of beq and pdf_for_pairs. If
the following is defined:

site A beq = a;
site B beq = b;
pdf_for_pairs A B pdf_gauss_fwhm = ab;
pdf_for_pairs B B pdf_only_eq_0 pdf_gauss_fwhm = b0b0;

then the 7 types of interactions would have broadening as follows:

Pair Gauss FWHM

A0-A0 Sqrt(a 2 Ln(2) / Pi^2)

A0-A1 Sqrt(a 2 Ln(2) / Pi^2)

A0-B0 ab

A0-B1 ab

B0-B0 b0b0

B0-B1 Sqrt(b 2 Ln(2) / Pi^2)

B0-A1 ab

For equivalent-position-0 and for distances within 10 Å then the following is required:

pdf_for_pairs * * pdf_only_eq_0
pdf_gauss_fwhm = If(X < 10, something, 0);

pdf_info can be useful for specifying what is being used. Consider three sites A, B, C. For three
sites there are (N^2+N)/2=6 types of atom-atom interactions:

A-A, A-B, A-C, B-B, B-C, C-C

Each of these can have broadening defined in three different ways, take A-A for example:

1) site A ... beq
2) pdf_for_pairs A A
3) pdf_for_pairs A A pdf_only_eq_0

Use of pdf_only_eq_0 results in three types of A-A interactions:

i) interaction where none are equivalent position zero.

ii) interaction where both are equivalent position zero.

iii) interaction where one is equivalent position zero and the other not.

If case (2) is used then (i), (ii) and (iii) all use case (2); for example:

site A ... beq ... pdf_for_pairs A A ...

If case (3) is used, then beq is used for (i) and (iii) and case (3) is used for (ii); for example:

site A ... beq ... pdf_for_pairs A A pdf_only_eq_0...

PDF refinement 84

84 PDF refinement

If both case (2) and (3) are used then beq is ignored and case (2) is used (i) and (iii), and case
(3) for (ii); for example:

site A ... beq ...
pdf_for_pairs A A... ‘ (i) and (iii)
pdf_for_pairs A A pdf_only_eq_0... ‘ (ii)

9.3 Inter and Intra molecule FWHMs

pdf_for_pairs can be used to assign different interaction types between molecules. For exam-
ple, to set the bond lengths for the atom Al1 of AlVO4 (see PDF-2.INP) for equivalent-position-
0 only, the following could be used:

prm intra_molec 0.01 min 1e-6
pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6" pdf_only_eq_0

pdf_gauss_fwhm = intra_molec;

The calculated pattern from PDF-2.INP therefore becomes:

Notice the 6 spikes; they correspond to the Al1 bonds with narrow FWHMs. If we wanted Al1
bonds that are not equivalent-position-0 to be different to the beq’s then we could use:

prm inter_molec 0.1 min 1e-6
prm intra_molec 0.01 min 1e-6
pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6" pdf_only_eq_0

pdf_gauss_fwhm = intra_molec;
pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6"

pdf_gauss_fwhm = inter_molec;

This gives the following calculated pattern where we see the various Al1 bonds.

Calculated G(r) with a molecule with narrow FWHMs

r (Angstroms)

76543210

G
(r

)
(a

.u
.)

600

500

400

300

200

100

0

-100

-200

PDF refinement 85

85 PDF refinement

The corresponding output from pdf_info becomes:

pdf_info
{
- = No pdf_for_pairs defined
0 = pdf_for_pairs defined with pdf_only_eq_0
1 = pdf_for_pairs defined without pdf_only_eq_0
2 = two pdf_for_pairs defined, one with pdf_only_eq_0 and one without pdf_only_eq_0

 Al1 ------222222------
 Al2 ------------------
 Al3 ------------------
 V1 ------------------
 V2 ------------------
 V3 ------------------
 O1 2-----------------
 O2 2-----------------
 O3 2-----------------
 O4 2-----------------
 O5 2-----------------
 O6 2-----------------
 O7 ------------------
 O8 ------------------
 O9 ------------------
 O10 ------------------
 O11 ------------------
 O12 ------------------
}

An exception is thrown if the same interaction is referenced in more than one pdf_for_pairs,
for example, the following will throw an exception as Al1-O1 is referenced twice:

pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6" pdf_only_eq_0 ...
pdf_for_pairs Al1 O1 pdf_only_eq_0 ...

The following will not throw an exception:

pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6" pdf_only_eq_0 ...
pdf_for_pairs Al1 O1 ...

Calculated G(r) with a molecule with narrow FWHMs

r (Angstroms)

76543210

G
(r

)
(a

.u
.)

600

500

400

300

200

100

0

-100

-200

PDF refinement 86

86 PDF refinement

9.4 Instrument Sinc function sinc-1.inp

In SINC-1.INP, pdf_convolute is used at the xdd level to convolute a Sinc function into phases:

pdf_convolute = Sin(Qmax X+q3)/If(Abs(X) < 0.5 Step_Size, If(X < 0,-q2,q2),X);
 min_X = -conv_max;
 max_X = conv_max;

SINC-1.INP also uses an xo_Is phase defined as:

xo_Is
 NoThDependence(0.0001)
 xo 10 I @ 100
 peak_type pv
 pv_lor 0.5
 pv_fwhm 2

pdf_convolute operates on PDF type phases only; the xo_Is phase is untouched. Note the
phase dependent use of an emission profile as defined in the NoThDependence macro. Multi-
ple pdf_convolute’s can be described at the global, xdd, str and pdf_for_pairs levels. Use of
pdf_convolute as a dependent of pdf_for_pairs is slower than at the other levels; thus where
possible use pdf_convolute outside of pdf_for_pairs.

9.5 Weighting of PDF and 2-Theta type data

PDF and 2 data can be of very different intensities; xdd_sum can be used to modifying the
weighing of these data to give approximately similar weights to the patterns. For example:

xdd file1.xy
 xdd_sum !sum1 = Abs(Yobs);
 weighting = 1 / sum1;
xdd file2.xy
 xdd_sum !sum2 = Abs(Yobs);
 weighting = 1 / sum2;
 pdf_data

9.6 Test_examples\pdf\beq-2.inp

BEQ-2-CREATE.INP generates a simulated pattern for BEQ-2.INP which:

• comprises the structure of AlVO4,

• 3 types of beq parameters,

• beq is a function of X (ie. X = r) and hence peak widths are a function of X,

• demonstrates the use of pdf_zero,

• demonstrates the use of rebin_with_dx_of and rebin_start_x_at.

9.7 Test_examples\pdf\beq-3.inp

BEQ-3-CREATE.INP generates a simulated pattern for BEQ-3.INP; it demonstrates the use of
pdf_for_pairs.

PDF refinement 87

87 PDF refinement

9.8 Speeding up refinement with rebin_with_dx_of

Increasing the x-axis step size of PDF data can speed up refinements; see BEQ-2.INP. The step
size must be of equal size and the start of the x-axis needs to be an integral multiple of the step
size. Data can therefore be rebinned to increase step size as follows:

macro Rebin_Step { 0.015 }
rebin_with_dx_of Rebin_Step rebin_start_x_at Rebin_Step

Rebinning is akin to collecting the data at a larger step size. All data is included; counts after
rebinning is equal to counts before rebinning. esd’s associated with the data are also re-
binned. rebin_start_x_at can be used to place the start of the data at an integral multiple of the
step size. In BEQ-2.INP parameters such as scale are written in terms of the rebin step size to
reflect the fact that the scaling of the data is changed due to rebinning.

9.9 Refining on beq parameters

Modify the BB macro so that its empty as in the following:

macro BB { } ' Enter ! to not refine, beq including low angle fwhm sharpening

This results in refinement of four independent beq parameters including the low angle sharp-
ening parameter of erf_a as seen in the following:

macro Beq(c, v)
{

#m_argu c
If_Prm_Eqn_Rpt(c, v, min 1e-6 max 10 val_on_continue = Rand(.1, 2);)
beq = CeV(c, v) Erf_Approx(erf_a X);

}

The Rwp plot is:

This type of convergence is indicative of correct derivative calculation. Convergence for coor-
dinates, occupancies, lattice parameters and pdf_zero are similar.

Iteration

200180160140120100806040200

R
w

p
 (

%
)

30

25

20

15

10

5

Launch Mode: C:\c\t5\test_examples\pdf\beq-2.inp

PDF refinement 88

88 PDF refinement

9.10 ... Refining on ADPs in PDF refinement – Uij parameters

site… occ Zr 1 u11 @ .01 u22 @ .01 u33 @ .01 u12 @ 0 u13 @ 0 u23 @ 0
adps_scale @ 1

ADPs can now be used and refined in PDF refinement. The syntax is similar to reciprocal space
refinement where the apds keyword, when used, generates the ADP parameters, for example,
the following:

site Zr1 x # y # z # occ Zr 1 apds

becomes:

site Zr1 x # y # z # occ Zr 1 ADPs { u11 # u22 # u33 # u12 # u13 # u23 # }

This implementation is similar to PDFGui (Farrow et al., 2007) where peaks are Gaussian even at

low-r. ADP parameters will therefore correct for peak width but not asymmetry. Asymmetry does

occur however and is noticeable when atomic displacement geometry is extreme.

adps_scale allows for the scaling of the Uij parameters and it can be a function of X where X
corresponds to the distance between atoms.

prm !delt1 0.75 min 1e-6 max 5
prm !delt2 0 min 1e-5 max 1
prm !Qb 0.05 min 1e-6 max 1
prm aa 1 min 1 _v = Rand(0.5, 1.5);
adps_scale = 2 aa (Abs(1 - delt1 / X - delt2 / X^2 + (Qb^2) X^2));

The FWHM of a PDF peak for atom i and j is given by:

FWHMij = Sqrt(adp_scalei Ucart,i + adp_scalej Ucart,j)

where Ucart is Uij in cartesian coordinates. _v is an alternative to val_on_continue.

9.11 ... Multiatom approach to ADPs in PDF refinement

macro ADP_5 and ADP_7
See file PDF-ADPS.INC

Examples

TEST_EXAMPLES\PDF-ADPS\
APPROX-1.INP
FIT_TO_GR.INP

In many cases, anisotropic displacement parameters in PDF refinement can be described us-
ing 5 or 7 beq type sites, we will call these descriptions ADP_5 and ADP_7. ADP_5 comprises
7 parameters instead of the normal 6 unn parameters. These ADP_5 parameters can be trans-
formed to unn parameters by fitting unn parameters to a pattern created from the ADP_5 pa-
rameters. The fit is reasonable considering the unn model has only 6 parameters. Some main
points when using ADP_5 in PDF refinement:

• Number of ADP parameters become 7 instead of 6.

PDF refinement 89

89 PDF refinement

• Broadening due to ADPs in G(r) is implied.
• Asymmetry at low r is implied.
• This approach works in Version 7 (albeit slower)

Asymmetry seen at low r is typically difficult to model; the ADP_n approach however implicitly
contains asymmetry. The computational effort increases as there are 7 atoms per ADP site;
this is offset by the very fast calculation of PDF patterns using beq type sites. The file PDF-
ADPS.INC contains the macros necessary for describing ADPs-7. APPROX-1.INP demonstrates
the ability of the ADPs-7 approach to describe unn models in reciprocal space. It has three
modes of operation:

1) CREATE_USING_unns: creates a simulated single crystal pattern from normal unn param-
eters for one atom. neutron_data is used the effects of atomic scattering factors.

2) FIT_USING_ADPs_5: fits to the simulated pattern using the ADPs-7 approach. This refine-
ment then saves the calculated ADPs-7 pattern created to a file called SIM-2.HKL.

3) DETERMINE_unns_FROM_ADPs_5: fits normal unn parameters to SIM-2.HKL.

ADP_5 sites are described in the ADP_5 macro, and it looks like:

macro ADP_5_0(s, &x0, &y0, &z0, atom, &o, &x1, &y1, &z1, &x2, &y2, &z2, &bo)
{
site s x = x0; y = y0; z = z0; occ atom = 0.2 o; beq = bo;
local #m_unique ns = Get(num_posns);
site s##_1p x = x0+x1; y = y0+y1; z = z0+z1; occ atom = 0.2 (ns / Get(num_posns)) o; beq = bo;
site s##_2p x = x0+x2; y = y0+y2; z = z0+z2; occ atom = 0.2 (ns / Get(num_posns)) o; beq = bo;
site s##_1m x = x0-x1; y = y0-y1; z = z0-z1; occ atom = 0.2 (ns / Get(num_posns)) o; beq = bo;
site s##_2m x = x0-x2; y = y0-y2; z = z0-z2; occ atom = 0.2 (ns / Get(num_posns)) o; beq = bo;
}

Two extreme cases have been performed; results for the first case, the refined and original Uij
parameters are:

 ADPs { 0.39524 0.39690 0.40143 -0.18277 -0.19009 -0.19268 } ' refined
 ADPs { 0.4 0.4 0.4 -0.19 -0.19 -0.19 } ' original

The refined values, from the DETERMINE_unns_FROM_ADPs_7 operation, shows good agree-
ment with the original values. The FIT_USING_ADPs_7 operation produces a fit that looks like:

A further extreme example is:

u11 .1 u22 0.2 u33 0.3 u12 0.03 u13 0.02 u23 0.01

2Th Degrees

4540353025201510

C
o

u
n

ts

600

500

400

300

200

100

0

PDF refinement 90

90 PDF refinement

 ADPs { 0.39524 0.39690 0.40143 -0.18277 -0.19009 -0.19268 } ' refined
 ADPs { 0.4 0.4 0.4 -0.19 -0.19 -0.19 } ' original

The FIT_USING_ADPs_5 operation produces a fit that looks like:

9.11.1.1....... Multiatom approach to ADPs – fitting to G(r) patterns

This section generates describes the a reciprocal space pattern using unn parameters, then
generates a G(r) pattern from the simulated data. Then fits to the G(r) pattern using either
ADP_5 or Uij parameters. Additionally, a reciprocal space patterns can then be simulated us-
ing the fitted ADP_5 parameters and then finally the loop is complete with a unns fit to the
reciprocal space pattern. The final unn parameters should match the original unn parameters
reasonably well. The control parameters are as follows:

#prm generate_recip_space_pattern = 1;
#prm generate_Gr_created_from_sine_transform = 0;
#prm generate_Gr_calc_using_Uij = 0;
#prm ADP_5_fit_to_Gr_calc_using_Uij = 0;
#prm ADPs_fit_to_Gr_calc_using_Uij = 0;
#prm ADP_5_fit_to_Gr_created_from_sine_transform = 0;
#prm ADPs_fit_to_Gr_created_from_sine_transform = 0;
#prm create_recip_ADP_5_fit_to_Gr_calc_using_Uij = 0;
#prm create_recip_ADP_5_fit_to_Gr_created_from_sine_transform = 0;
#prm Fit_create_recip_ADP_5_fit_to_Gr_calc_using_Uij = 0;
#prm Fit_create_recip_ADP_5_fit_to_Gr_created_from_sine_transform = 0;
macro Append_to_File_Name { 1 } ‘ anything here to identify output files created
#prm include_resolution_broadening = 1;

These need to be executed one at a time and in sequence; they should be self-explanatory.
The main point is that the sine transform pattern created using generate_Gr_cre-
ated_from_sine_transform comprises asymmetry whereas the calculated G(r) created using
generate_Gr_calc_using_Uij does not. The former can be considered the ‘true’ G(r) pattern.
Also of importance is that the pattern created using generate_Gr_created_from_sine_trans-
form is generally better fitted using ADP_5 (or ADP_7) using than when using
ADPs_fit_to_Gr_created_from_sine_transform. The reason is that the latter does not include
asymmetry.

u11 .4 u22 0.4 u33 0.4 u12 -0.19 u13 -0.19 u23 -0.19

2Th Degrees

4540353025201510

C
o

u
n

ts

600

500

400

300

200

100

0

PDF refinement 91

91 PDF refinement

9.12 ... Structure Solution, Simulated Annealing

PDF\ALVO4\STRUCTURE-SOLUTION-CREATE.INP creates a simulated pattern for STRUCTURE-
SOLUTION.INP. It’s a simulated annealing refinement with all coordinates starting at zero and
with anti-bump penalties applied using:

AI_Anti_Bump(O* , O* , 2.4, 1, 5)
AI_Anti_Bump(Al*, O* , 1.6, 1, 5)
AI_Anti_Bump(Al*, Al*, 2.8, 1, 5)

The correct solution is found as seen in the following:

The range of convergence for atomic coordinates are smaller than with reciprocal space as in
normal Rietveld refinement. This is because the coordinates, in the PDF case, changes peak
positions rather that peak intensities; with the former having a narrow range of convergence.
It may be possible to increase the range of convergence for the PDF case by increasing the
peak widths; this however comes at the expense of resolution and may also result in an even
smaller range of convergence.

9.13 ... Rigid bodies with PDF data

PDF\ALVO4\RIGID.INP operates on simulated data created by STRUCTURE-SOLUTION-CRE-
ATE.INP. It demonstrates the use of rigid bodies with PDF data.

9.14 ... Occupancy merging with PDF data

PDF\OCC-MERGE-PBSO4\OCC-MERGE.INP operates on simulated data created by CRE-
ATE.INP. It demonstrates the use of occ_merge with PDF data.

9.15 ... Equivalence of pdf_gauss_fwhm and beq for one atom type

PDF\SI1.INP comprises an option to use beq or pdf_gauss_fwhm. For the beq case we have:

PDF refinement 92

92 PDF refinement

beq = width;

and for pdf_gauss_fwhm we have:

pdf_gauss_fwhm = Sqrt(width 2 Ln(2) / Pi^2);

The above cases are equivalent when all atoms are of the same type.

Stacking faults 93

93 Stacking faults

10. STACKING FAULTS

[site $name]...
[layer $layer]

[stack $layer]...
[sx E] [sy E] [sz E]
[generate_these $sites]

[generate_name_append $append_to_site_name]

The super cell approach to stacking faults has been implemented. layer identifies a site as
belonging to a layer called $layer; stack applies a stacking vector { sx, sy, sz } to the named
layer. Structures factors are generated in the usual manner with a shift applied corresponding
to the stacking vector. stack operates in any space group. Sites that do not belong to a layer
are treated as un-stacked and their structure factors are generated in the usual manner. gen-
erate_these generates the sites found in $sites for the stack with coordinates that reflect orig-
inal $sites positions plus the stacking vector. generate_name_append appends $ap-
pend_to_site_name to the generated site. The generated sites have occupancies set to zero
which signals a dummy site. Dummy sites do not take part in structure factor calculations and
hence speed is not hindered. The dummy sites allow for graphical display of the layers, i.e.

Importantly, penalties can operate on dummy sites which allow for restraints such as Dis-
tance_Restrain. The following rules govern the behaviour of sites marked with layer:

• A site marked with layer cannot take part in restraints.

• A site marked with layer is not displayed graphically.

• A site generated using generate_these can take part in restraints.

• A site not marked with layer can take part in restraints.

For example:

space_group P1
site O1 ... layer A
site O2 ... layer A

Stacking faults 94

94 Stacking faults

stack A
sx ...
generate_these O1

generate_name_append _1
append_fractional

in_str_format

will output for append_fractional the following:

site O1 ...
site O2 ...
site O1_1 ... occ O 0

The TEST_EXAMPLES\STACKING-FAULTS\KAOLINITE.INP shows how to simplify the setting up of
layers with the use of simple macros. Speed of calculation for structure factors are very fast
and the derivatives of the stacking vectors { sx, sy, sz } are very fast. The main bottle neck in
speed is summing the peaks to Ycalc. The switch “#define Speed” in KAOLINITE.INP shows
keywords that can speed things up in the early stages of determining the stacking vectors.

10.1 ... Fitting to a Debye-formulae pattern using ‘stack’

A test pattern was generated using the Debye scattering equation. The structure comprised a
single atom in an Orthorhombic unit cell with 40 layers (40x40x40 unit cells) in the a-b plane
shifted according to {Round(Rand(0,2))/3, Round(Rand(0,2))/3, 0}. The blue line in the follow-
ing is the generated pattern comprising the average of 30 runs of the Debye scattering equa-
tion. The red line corresponds to a Rietveld fit of 6 super cell structures (1x1x40) showing that
the super cell approach is a good approximation to the Debye formulae for this example.

The example STACKING-FAULTS\DEBYE-NEW.INP corresponds to the Rietveld fit using the layer
and stack keywords. The DEBYE-OLD.INP file corresponds to the same Rietveld fit but without
the layer and stack keywords; instead, layers are explicitly defined using site in an enlarged
unit cell.

There are two time-consuming bottle necks dealt with:

2Th Degrees

7570656055504540353025201510

C
o

u
n

ts

12,000

11,000

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

Stacking faults 95

95 Stacking faults

1) Summing peaks to Ycalc

2) Calculating structure factors for the stacked layers

The phase dependent [del_approx #] groups peaks from the peaks buffer whilst summing
peaks to Ycalc; the peaks are grouped such that their 2Th positions all lie within:

(–del_approx Peak_Calculation_Step) < 2 Th < (del_approx Peak_Calculation_Step)

Once the group is found then only the two peaks with the smallest and largest 2Th is kept. The
in-between peaks have their intensities appropriated to the kept peaks. The peak buffer
stretching routines have also been optimized for both accuracy and speed. The following
points should be noted when working with large super cells

• The layer and stack keywords increase computational speed and reduce memory usage.

• del_approx increase computation speed at a relatively small cost to accuracy; a value be-
tween 1 and 3, dependent on Peak_Calculation_Step, is typically acceptable.

• The graphical display of 10s of 1000s of hkl ticks (there’s 51584 hkls in each phase of the
DEBYE-NEW.INP) is time consuming; turning the graphical hkl-ticks option Off is worth-
while.

10.2 ... Fitting to Kaolinite data

STACKING-FAULTS\KAOLINITE.INP demonstrates the application of stack and layer with the fol-
lowing fit:

In this example the stacking vectors are refined in a simulated annealing process.

2Th Degrees

130120110100908070605040302010

S
q

rt
(C

o
u

n
ts

)

90

80

70

60

50

40

30

20

10

0

Stacking faults 96

96 Stacking faults

10.3 ... Stacking faults and generating sequences of layers

[generate_stack_sequences] {
[number_of_sequences !E]
[number_of_stacks_per_sequence !E]
[save_sequences $file]
[save_sequences_as_strs $file]
[user_defined_starting_transition $tran-

sition_name]
[layers_tol !#0.5]
[n_avg !E]
[num_unique_vx_vy !N]
[match_transition_matrix_stats {...}]
[transition $transition_name]...

[use_layer $layer]
[height E]
[n !N]
[to $to_transition_name !E]...

[ta E] [tb E] [tz E]
[a_add E] [b_add E] [z_add E]

}
' Get(generated_c)

Examples

TEST_EXAMPLES\STACKING_FAULTS\
FIT-1.INP
FIT-2.INP
FIT-3.INP
RIETVELD-GENERATE\

CREATE-SEQUENCES.INP
RIETVELD-GENERATE.INP
FIT-TO-RIETVELD-GENERATED.INP
RIETVELD-GENERATED-200-2000.XY
STRS-200-2000.TXT

Stacking fault generation and refinement can now be performed at speeds that make routine
analysis possible (Coelho et al., 2016). generate_stack_sequences generates sequences of
stacks from the transition matrix described by the transition keyword. The opening and closing
braces of { ... } corresponds to a block where keywords local to generate_stack_sequences
can be used. Outside of the braces the generate_stack_sequences can’t be used. After gener-
ation of the sequences, Get(generated_c) is updated with the average thickness of the gener-
ated sequences. It can be used to set the c lattice parameter.

On termination of refinement, num_unique_vx_vy reports on the number of unique { sx, sy }
stacking vector coordinates for all layer types. transition defines a ‘from’ transition with the
name $transition_name. The transition uses the layer defined in use_layer. to defines the to-
transition. $to_transition_name must be a defined $transition_name. n returns the number of
transitions generated for the corresponding to to-transition. height: can be used instead of
z_add keywords. ta, tb: defines the stacking vector x and y coordinates in terms of the crystal-
lographic a and b axes. a_add, b_add: defines the stacking vector x and y coordinates relative
to the previous stacking vector in terms of the crystallographic a and b axes. tz: defines stack-
ing vector z coordinate along the crystallographic c axis in Å. add_z: defines stacking vector z
coordinate along the crystallographic c axis in Å relative to the previous stacking vector.

user_defined_starting_transition: if used, stacking begins at the transition with the name of
$transition_name. Otherwise, stacking begins at the transition with the greatest probability
according to the probability density matrix. layer_tol corresponds to q of Fig. 1 in the paper
(Coelho, 2016); it describes the termination condition when generating the stacking sequence.

Stacking faults 97

97 Stacking faults

10.3.1 Generating the same stacking sequences each run

The random number generator can be seeded with a constant seed using seed to generate the
same set of stacking sequences each run, for example:

seed #number

#number is a constant integer. Each #number generates its own unique set of random num-
bers. Generating identical sets of stacking sequences is useful when changes in Rwp, that ex-
cludes stacking sequence variation, is required.

10.3.2 The SF_Smooth macro

Stacking faulted calculated patterns can contain ripples when the peak shapes are small or
when there are too few layers stacked. The SF_Smooth macro, defined in TOPAS.INC smooths
these ripples such that small supercells can approximate large supercells; this increases
computation speed and reduces memory usage. All stacking fault examples use SF_Smooth;
typical usage is:

SF_smooth(@, 1, 1)

The refined parameter adjusts the width of a Gaussian convolution that is dependent on hkls
and the intensities of the reflections. The last argument s (the ‘1’) can be used to adjust the
tolerance of peak_buffer_based_on used in the SF_Smooth macro; the definition of the latter
is:

peak_buffer_based_on = idl;
peak_buffer_based_on_tol = Max(0.01 idl, Peak_Calculation_Step 0.5 s);

Reducing s increases the number of peaks in the peaks buffer and increases the accuracy of
the calculated pattern. s=1 is typically sufficient.

10.3.3 Fitting to DIFFaX test diamond data

FIT-1.INP uses generate_stack_sequences to fit to data generated from the DIFFaX suite
(Treacy, 1991); the INP segment that generates the sequences looks like:

 generate_stack_sequences {
 number_of_sequences Nseqs 200
 number_of_stacks_per_sequence Nv 200
 num_unique_vx_vy 6
 Transition(1, lpc)
 to 1 = pa; a_add = 2/3; b_add = 1/3; n !n1 349984
 to 2 = 1-pa; a_add = 0; b_add = 0; n !n2 149781
 Transition(2, lpc)
 to 1 = 1-pa; a_add = 0; b_add = 0; n !n3 149781
 to 2 = pa; a_add = -2/3; b_add = -1/3; n !n4 350254
 }

The generated probability parameter pa can be determined using the n values as follows:

Stacking faults 98

98 Stacking faults

prm !pa_gen = (n1+n3)/(n1+n2+n3+n4); : 0.699974874

The fit to the DIFFaX data looks like:

10.3.4 Stacking faults from layers of different layer heights

Layers of different thicknesses can be accurately modelled and with fast refinement. Here’s a
fit to simulated data (FIT-2.INP) for two different layer heights of 5 and 6Å.

10.3.5 Rietveld-Generated example

The files in the RIETVELD-GENERATE directory can be used to create a stacking faulted test pat-
tern using Rietveld refinement; the test pattern can then be refined against. CREATE-SE-
QUENCES.INP creates the INP format stacking sequences and places the result in the file
STRS-200-2000.TXT. The file RIETVELD-GENERATE.INP can be used to create the test pattern
RIETVELD-GENERATED-200-2000.XY. This test pattern can be fitted-to using FIT-TO-RIETVELD-
GENERATED.INP; this INP file uses generate_stack_sequences and it demonstrates the

Fit-1.INP, Fitting to DIFFaX test diamond data

2Th Degrees

140130120110100908070605040302010

L
n

(C
o

u
n

ts
)

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

Fit-2.INP, Fitting to test data created with different layer heights

2Th Degrees

140130120110100908070605040302010

S
q

rt
(C

o
u

n
ts

)

180

160

140

120

100

80

60

40

20

0

Stacking faults 99

99 Stacking faults

accuracy and speed of the stacking fault averaging procedure. The fit to the Rietveld generated
stacking faulted pattern looks like:

10.3.6 Refining on layer heights

Layer heights can be refined by refining on parameters that are a function of the add_z or height
keywords. The FIT-3.INP example refines on 3 height parameters as well as the z fractional
atomic coordinates of the sites that comprise the layers. It also lists six types of transitions
which operate on three unique layer types. The transitions points to the unique layer types us-
ing use_layer. The c lattice parameter is defined and refined using the following:

prm qq 0 c = Get(generated_c) + 0.0001 qq; : 1828.085117

Get(generated_c) is also used to initialize the z fractional coordinates of the sites as follows:

prm height_Se01 7.49691
prm !zSe01 = height_Se01 / Get(generated_c);
site Se01 x 0.5 y 0 z = zSe01; occ Se 1 beq !bval 1 layer cd00

The fit to the test data looks like:

Fit-to-Rietveld-Generated.INP

2Th Degrees

3530252015

S
q

rt
(C

o
u

n
ts

)

300

250

200

150

100

50

0

Fit-3.INP, Refining on stacking vector and structural parameters

2Th Degrees

282624222018161412108642

S
q

rt
(C

o
u

n
ts

)

500

400

300

200

100

0

Quantitative Analysis 100

100 Quantitative Analysis

11. QUANTITATIVE ANALYSIS

[xdd]...
[mixture_MAC #]
[mixture_density_g_on_cm3 #]
[weight_percent_amorphous !E]
[elemental_composition]
[element_weight_percent $atom $Name #]...
[element_weight_percent_known $atom #]...
[prm = Get(sum_smvs)...]
[prm = Get(mixture_MAC)…]
[prm = Get(mixture_density_g_on_cm3) …]
[Mixture_LAC_1_on_cm(0)]
[str]...

[cell_mass !E] [cell_volume !E] [weight_percent !E]
[spiked_phase_measured_weight_percent !E] [corrected_weight_percent !E]

[phase_MAC !E]
[prm = Get(sum_smvs)...]
[prm = Get(smv)...]
[prm = Get(sum_smvs_minus_this)...]
[prm = Get_Element_Weight(atom)...]
[Phase_LAC_1_on_cm(0)]
[Phase_Density_g_on_cm3(0)]

Examples in TEST_EXAMPLES\QUANT

11.1 ... Summary of Quant examples

• QUANT-1.INP: shows the use of element_weight_percent_known etc.

• QUANT-2.INP: uses the Known_Weight_Percent macro

• QUANT-3.INP: uses elemental constraint using Get_Element_Weight

• QUANT-4.INP: uses Known_Weight_Percent on a hkl_Is phase.

• QUANT-5.INP: uses a dummy_str to describe an amorphous phase

• QUANT-6.INP: uses a hkl_Is phase; links a dummy_str to the hkl_Is phase.

• QUANT-7.INP: uses a fit_obj that is a function of a user_y object to describe a phase; links
a dummy_str to a fit_obj to get QUANT info.

QUANT implementation, to a large extent, is written internally using the TOPAS Symbolic sys-
tem; this allows great flexibility. Dependencies are determined automatically and unneces-
sary recalculations kept to a minimum. QUANT-1.INP uses many of the above keywords and
additionally writes equivalent terms in the form of equations, for example:

Quantitative Analysis 101

101 Quantitative Analysis

prm = 100 Get(smv) / Get(sum_smvs); : 0 ‘ This is weight_percent

prm q = spiked_phase_measured_weight_percent /
 spiked_phase_measured_weight_percent_wt; : 0

prm = q Get(weight_percent); : 0 ‘ This is corrected_weight_percent
prm = 100 (1 - q); : 0 ‘ This is weight_percent_amorphous

11.2 ... Elemental weight percent constraint

If an elemental weight percent was known, and three phases of the mixture comprised this
element then Get_Element_Weight can be used to get the weight of the element as a function
of the structure, i.e.

str ...
prm z1 = Get_Element_Weight(Zr);
MVW(!m1 0, !v1 0,0)

str ...
scale s2 0.001
prm z2 = Get_Element_Weight(Zr);
MVW(0, !v2 0,0)

str ...
scale s3 0.001
prm z3 = Get_Element_Weight(Zr);
MVW(0, !v3 0,0)

Rearranging the formulae for element weight percent, the scale parameter of one of the
phases, say the first one, can be written as:

scale = (0.01 known_Zr Get(sum_smvs_minus_this) - s2 v2 z2 - s3 v3 z3)
 / (v1 (z1 - 0.01 known_Zr m1));

Get(sum_smvs_minus_this) returns the sum of SMVs minus the phase where it is defined.
QUANT-3.INP demonstrates this constraint with good convergence. It comprises 4 phases with
three comprising Zr atoms. QUANT-2.INP demonstrates constraining a weight percent to a
known value using the macro:

macro Known_Weight_Percent(& w)
{

scale = (w / (100 - w)) Get(sum_smvs_minus_this) / (Get(cell_mass) Get(cell_volume));
}

11.3 ... Elemental composition and Restraints

The xdd dependent elemental_composition reports on the elemental composition of atoms
within the structures of the xdd, for example:

Quantitative Analysis 102

102 Quantitative Analysis

‘ Before refinement
xdd ...

elemental_composition

‘ After refinement
xdd ...

elemental_composition
{
 Rietveld
 AL 0.875`_0.021
 O 26.135`_0.009
 SI 0.090`_0.003
 Y 6.289`_0.012
 ZR 66.612`_0.029
}

The xdd dependent elemental_weight_percent returns the weight percent of an element within
the corresponding str’s of the xdd. Example usage:

‘ Before refinement
penalties_weighting_K1 0.1
xdd ...

element_weight_percent Zr+4 zr 0
restraint = (zr - 65); : 0

‘ After refinement
penalties_weighting_K1 0.1
xdd ...

element_weight_percent Zr+4 zr 65.027
restraint = (zr - 65); : 0.027525

In this example, zr is the name given to the element Zr+4, the restraint shows a known value of
65 (set for example by XRF results). The refinement obeys the restraint according to the value
set for penalties_weighting_K1. A weight percent can be restrained using:

xdd ...
penalties_weighting_K1 0.2
restraint = (Cubic_Zirconia_wt_percent - 36); : 0
str ...

MVW(0,0, !Cubic_Zirconia_wt_percent 0)

Note the name ‘Cubic_Zirconia_wt_percent’ which is given to weight_percent.

11.4 ... Amorphous phase composition

If spiked_phase_measured_weight_percent is defined then elemental_composition will report
on Rietveld values, Corrected values, and values from the original un-spiked sample. If ele-
ment_weight_percent_known keywords are defined then elemental_composition will addi-
tionally report on the elemental contents of the amorphous phase, for example, from QUANT-
1.INP we have:

elemental_composition
{

 Rietveld Corrected Original Other
AL 1.176`_0.042 1.059`_0.000 0.000`_0.000 0.000`_0.000
O 26.271`_0.017 23.640`_0.832 23.162`_0.849 0.838`_0.849
SI 0.104`_0.004 0.094`_0.005 0.096`_0.005 0.000`_0.000
Y 6.182`_0.013 5.563`_0.204 5.676`_0.209 0.000`_0.000
ZR 66.267`_0.055 59.631`_2.185 60.847`_2.229 2.153`_2.229
Other 0.000`_0.000 10.015`_3.224 10.219`_3.290 7.228`_0.212

}

Quantitative Analysis 103

103 Quantitative Analysis

The ‘Rietveld’ and ‘Corrected’ columns corresponds to elemental weight-percents as deter-
mined for the spiked phase; the ‘Original’ and ‘Other’ columns correspond to elemental
weight-percents of the original phase. The ‘Rietveld’, ‘Corrected’ and ‘Original’ columns sum
to 100%. The last row of the ‘Corrected’ column (purple number) corresponds to
Get(weight_percent_amorphous). The last row of the ‘Other’ column (red number) is the
amount of sample that is undefined; it comprises the number in Green minus the elements of
the ‘Other’ column. Note the zeros for Al (blue number); this is due to the spiked phase
(dummy test data) being the only phase containing Al.

11.5 ... Using a dummy_str phase to describe amorphous content

If it is known that the amorphous content (purple number) in the above table comprises a
known composition, say TiO2, then a dummy_str can be used to describe the amorphous con-
tent, or:

dummy_str
phase_name "Amorphous"
a 5 b 5 c 5
space_group 1
site Ti occ Ti 1
site O occ O 2
Known_Weight_Percent(10.0148)
MVW(0, 0 ,0)

dummy_str’s that are void of MVW takes no part in Quantitative analysis. However, if its lattice
parameters and chemistry correspond to a real structure then Mixture_LAC_1_on_cm and
phase_LAC can be correctly calculated. In the case of using the Brindley correction these
changed values will change the quantitative results. The space group entry can be different to
P1 so long as the chemistry is correct. Inclusion of the dummy_str produces:

elemental_composition
{

 Rietveld Corrected Original
AL 1.059`_0.038 1.059`_0.000 0.000`_0.000
O 27.652`_0.015 27.652`_0.975 27.256`_0.995
SI 0.094`_0.003 0.094`_0.005 0.096`_0.005
TI 6.002`_0.000 6.002`_0.215 6.125`_0.219
Y 5.563`_0.012 5.563`_0.204 5.676`_0.209
ZR 59.631`_0.050 59.631`_2.185 60.847`_2.229
Other 0.000`_0.000 0.000`_3.583 0.000`_3.656

}

Note that the ‘Other’ row becomes zero as the amorphous content is assigned to the
dummy_str. The changes in mixture values are:

Without dummy_str:

Mixture_LAC_1_on_cm(557.47740`_0.58665)
mixture_density_g_on_cm3 5.26713308`_0.00292681843

Quantitative Analysis 104

104 Quantitative Analysis

With dummy_str:

Mixture_LAC_1_on_cm(608.85143`_0.76954)
mixture_density_g_on_cm3 5.86601008`_0.00407998952

If XRF results were entered for element_weight_percent_known, for example:

element_weight_percent_known Zr 63
element_weight_percent_known O 24

then we get:

elemental_composition
{

 Rietveld Corrected Original Other
AL 1.059`_0.038 1.059`_0.000 0.000`_0.000 0.000`_0.000
O 27.652`_0.015 27.652`_0.975 27.256`_0.995 -3.256`_0.995
SI 0.094`_0.003 0.094`_0.005 0.096`_0.005 0.000`_0.000
TI 6.002`_0.000 6.002`_0.215 6.125`_0.219 0.000`_0.000
Y 5.563`_0.012 5.563`_0.204 5.676`_0.209 0.000`_0.000
ZR 59.631`_0.050 59.631`_2.185 60.847`_2.229 2.153`_2.229
Other 0.000`_0.000 0.000`_3.583 0.000`_3.656 1.103`_0.431

}

The negative element weight percent for O for the amorphous content reflects the fact that the
measured XRF value for O is lower than the refinement’s value (this example is used for testing;
XRF values here are fictitious).

11.6 ... Quant using hkl_Is or other non-str phases

dummy_str’s can be used to represent the quantitative results arising from non-str phases.
For example, consider a phase where the structure is not known but the chemistry is known.
If a calibration constant has been determined relating the hkl_Is intensities to the scale pa-
rameter of the hkl_Is phase, then a dummy_str can be written as follows (see QUANT-6.INP):

dummy_str
phase_name "Linked Cubic Zirconia"
Cubic(5.137866)
space_group F_M_-3_M
site Zr x 0 y 0 z 0 occ Zr 0.85
 occ Y 0.15
site O x 0.25 y 0.25 z 0.25 occ O 0.96
scale = hkl_scale;
Phase_LAC_1_on_cm(0)
Phase_Density_g_on_cm3(0)
MVW(0, 0 ,0)

Note, in this case a space group has been entered with structural parameters that looks like a
known structure; this could, for example, occur where the structure is known in an ordered
state, but the diffraction pattern comprises a disordered state. In other cases, the P1 space
group may suffice with site occupancies corresponding to the appropriate chemistry. The
dummy_str is linked to the hkl_Is phase by assigning the scale parameter of the dummy_str to

Quantitative Analysis 105

105 Quantitative Analysis

the scale parameters of the hkl_Is phase. QUANT-7.INP is a similar except that a fit_obj is linked
to a dummy_str. Graphically the linked dummy_str is plotted with the calculated pattern of the
hkl_Is phase or fit_obj, for example, QUANT-7.INP produces:

Here the blue line corresponds to the dummy_str which plots the calculated pattern of the
linked fit_obj which in turn comprises a user_y object. The weight percent value determined by
the dummy_str is also displayed.

11.7 ... External standard method

The method of O’Connor and Raven (1988) has been implemented in both GUI and Launch
modes using the macros (see TEST_EXAMPLES\K-FACTOR):

macro K_Factor_MAC_K(mac, k, tot) {
 move_to xdd
 local !k_factor_mac_local_ mac
 local !k_factor_k_local_ k
 local !k_factor_sum_wps_ = 0; : tot

}
macro K_Factor_WP(result) {

local k_factor_wp_ = 1.6605402 Get(smv) k_factor_mac_local_
 / k_factor_k_local_; : result

if Prm_There(k_factor_sum_wps_) {
existing_prm k_factor_sum_wps_ += k_factor_wp_;

}
}

11.8 ... QUANT Keywords

[cell_mass !E] [cell_volume !E] [weight_percent !E]

QUANT-7.INP

2Th Degrees

1201101009080706050403020

S
q

rt
(C

o
u

n
ts

)

200

180

160

140

120

100

80

60

40

20

0

-20

Linked Cubic Zirconia 99.78 %

Zircon 0.00 %

Zr O2 0.21 %

Corundum Al2 O3 0.01 %

Quantitative Analysis 106

106 Quantitative Analysis

[spiked_phase_measured_weight_percent !E] [corrected_weight_percent !E]

cell_mass, cell_volume and weight_percent corresponds to the unit cell mass, volume,
and weight percent of the phase within the mixture. spiked_phase_measured_weight_per-
cent defines the weight percent of a spiked phase. It is used by the xdd dependent
weight_percent_amorphous to determine amorphous weight percent. Only one phase per
xdd is allowed to contain spiked_phase_measured_weight_percent. cor-
rected_weight_percent is the weight percent after considering amorphous content as de-
termined by weight_percent_amorphous. The weight fraction wp for phase p is calculated
as follows:

𝑤𝑝 =
𝑄𝑝

∑ 𝑄𝑝
𝑁𝑝

𝑝=1

where Np = Number of phases.

Qp = SpMpVp/Bp

Sp = Rietveld scale factor for phase p.

Mp = Unit cell mass for phase p.

Vp = Unit cell volume for phase p.

Bp = Brindley correction for phase p,

The Brindley correction is a function of brindley_spherical_r_cm and the phase and mixture
linear absorption coefficients; the latter two are in turn functions of phase_MAC and mix-
ture_MAC respectively, or,

Bp is function of : (LACphase−MACmixture) brindley_spherical_r_cm

LACphase = linear absorption coefficient of phase p, packing density=1.

MACmixture= linear absorption coefficient of the mixture, packing density=1.

This makes Bp a function of the weight fractions wp of all phases and thus wp as written
above cannot be solved analytically. Subsequently wp is solved numerically using an itera-
tive procedure.

[mixture_density_g_on_cm3 #]

Calculates the density of the mixture assuming a packing density of 1, see also mix-
ture_MAC.

[mixture_MAC #]

Calculates the mass absorption coefficient in cm2/g for a mixture as follows:

(
𝜇

𝜌
)

𝑚𝑖𝑥𝑡𝑢𝑟𝑒

= ∑ (
𝜇

𝜌
)

𝑖

 𝑤𝑖

𝑁

𝑖=1

where wi and ( /)i is the weight percent and phase_MAC of phase i respectively. Errors are
reported for phase_MAC and mixture_MAC. The following example calculates phase and
mixture mass absorption coefficients.

xdd ...

Quantitative Analysis 107

107 Quantitative Analysis

mixture_MAC 0
str ...

phase_MAC 0

The macros Mixture_LAC_1_on_cm, Phase_LAC_1_on_cm and Phase_Density_g_on_cm3
calculates the mixture and phase linear absorption coefficients (for a packing density of 1)
and phase density, for example:

xdd ...
Mixture_LAC_1_on_cm(0)
str ...

Phase_Density_g_on_cm3(0)
Phase_LAC_1_on_cm(0)

Errors for these quantities are also calculated. Mass absorption coefficients obtained from
NIST at http://physics.nist.gov/PhysRefData/XrayMassCoef are used to calculate mix-
ture_MAC and phase_MAC.

 [phase_MAC !E]

Calculates the mass absorption coefficient in cm2/g for the current phase. See description
for mixture_MAC.

[weight_percent_amorphous !E]

Determines the amorphous content in a sample. The phase dependent
spiked_phase_measured_weight_percent needs to be defined for weight_percent_amor-
phous to be calculated.

http://physics.nist.gov/PhysRefData/XrayMassCoef

Magnetic Structure Refinement 108

108 Magnetic Structure Refinement

12. MAGNETIC STRUCTURE REFINEMENT

[str]...
 [mag_only_for_mag_sites]
 [mag_space_group $symbol]
 [site]...
 [mlx E] [mly E] [mlz E] [mg E]
 [mag_only]
 ' Site dependent macros
 MM_CrystalAxis_Display(mxc, myc, mzc)
 MM_CrystalAxis_Refine(mxc, mxv, myc, myv, mzc, mzv, mlx_v, mly_v, mlz_v)
 MM_Cartesian_Display(mxc, myc, mzc)
 MM_Cartesian_Refine(mxc, mxv, myc, myv, mzc, mzv, mlx_v, mly_v, mlz_v)

Thanks to Branton Campbell and John Evans for expert assistance during the implementation
of magnetic structure refinement. Magnetic refinement is implemented using the keywords
mlx, mly, mlz, mg and mag_space_group. See examples in the TEST_EXAMPLES\MAG directory
as well as the tutorial by John Evans at:

http://www.dur.ac.uk/john.evans/topas_workshop/tutorial_lamno3_magnetic.htm

The Magnetic intensity is given by (* denotes conjugate gradient):

Magnetic intensity = Fmagcperp . Fmagcperp* = |Fmagcperp|

Fmagcperp = Fmagc - (Fmagc . Qhat) Qhat

Or in words, Fmagcperp is the component of the magnetic vector in the direction perpendic-
ular to the scattering vector Q, where:

Q = (L-1)T * h

Qhat = Q / |Q|

L is the Cartesian lattice parameters in 3x3 matrix form

h is the Miller indices in vector form

* denotes matrix multiplication

Superscript -1 denotes matrix inverse

Superscript T denotes matrix transpose

(L-1)T = reciprocal lattice parameters

Fmagc in terms of the Cartesian lattice parameters is:

Fmagc = L * Fmag

Fmag for the plane h for a single site is:

Fmag = ∑j (Bj * m) Exp(2π i Uj)

http://www.dur.ac.uk/john.evans/topas_workshop/tutorial_lamno3_magnetic.htm

Magnetic Structure Refinement 109

109 Magnetic Structure Refinement

where the summation is over the equivalent positions j and:

Uj = h.Rj x + h.tj

x = { x, y, z } = site fractional coordinates

m = { mlx, mly, mlz } = magnetic moment

Rj = rotation part of space group operator

tj = translational part of space group operator

dj = sj determinant(Rj) = sj det(Rj)

Bj = sj det(Rj) Rj = magnetic transformation matrix

The file MAGDATA.DAT (a GSAS file - permission for use granted by Robert Von Dreele, author
of GSAS) comprises data for calculating magnetic form factors. The Lande splitting factor can
be refined using the site dependent parameter mg; defaults for mg are obtained from MAG-
DATA.DAT. Shubnikov groups are obtained from the file SHUBNIKOVGROUPS.TXT. When
mag_only is defined, the non-magnetic component to intensity for the site in question is ig-
nored. When mag_only_for_mag_sites is defined then the non-magnetic component to inten-
sity for all magnetic sites for the str in question is ignored.

12.1 ... Magnetic refinement warnings/exceptions

The following two messages:

1) Warning: Magnetic moment mlx of site Fe has no contribution to Fmag

2) Magnetic moment mlx of site Fe cannot be refined as it has no derivative

arise when for each group of equivalent positions of a special position, the first row of the ma-
trix ∑jBj*m is zero where the j’s sum over the equivalent positions of a special position group.
Similar messages for mly and mlz are given. Note, even though mlx, mly, mlz may not be re-
fined, the warnring of (1) is still given dependening on associated constraints. Refinement ter-
minates in the case of message (2) when mlx is being refined.

12.2 ... Displaying Magnetic moments

Magnetic moments (Occupancy Bj*m) are dis-
played graphically when view_structure is de-
fined. For the case where the atom balls are
masking the display of the magnetic moment
arrows, the “Atom size” can be varied as shown
in the following:

12.3 ... ‘Decomposing’ Fmag for speed

When using magnetic space groups, equivalent positions for groups other than 1.1 are written
in terms of other equivalent positions.

Magnetic Structure Refinement 110

110 Magnetic Structure Refinement

Let Cj = cos(Uj),

Sj = sin(Uj)

Exp(i U) = Cj + i Sj = Euler's formulae

For two equivalent positions of a special position, we have:

U1 = U2 = U

Fmag1 +
Fmag2

= s1 det(R1) R1 m Exp(i U) + s2 det(R2) R2 m Exp(i U)

= (s1 det(R1) R1 + s2 det(R2) R2) m Exp(i U)

= c m Exp(i U)

c is independent of x. Note, a particular special position could have many equivalent po-
sitions.

If for two equivalent positions R1 = -R2 and t1 = -t2 then:

U1 = -U2 = U

Fmag1 + Fmag2 =

Now,

or,

For s1 = s2,

For s1 = -s2,

s1 det(R) R m Exp(i U) + s2 det(-R) (-R) m Exp(-i U)

det(R) R = det(-R) (-R)

Fmag1 + Fmag2 = det(R) R m (s1 Exp(i U) + s2 Exp(-i U))

Fmag1 + Fmag2 = s1 det(R) R m 2 C

Fmag1 + Fmag2 = s1 det(R) R m (2 i S)

If for two equivalent positions R1 = R2, then:

Fmag1 + Fmag2 = s1 det(R) R m Exp(i h. R x) Exp(i h.t1) +

s2 det(R) R m Exp(i h. R x) Exp(i h.t2)

= det(R) R m (s1 Exp(i h.t1) + s2 Exp(i h.t2)) Exp(i h. R x)

= c Exp(i h. R x)

c is independent of x and is calculated only once. Many R's can be the same for a particular
space group with only the t's changing.

Calculating C and S:

Exp(i (h . R x + h. t)) = Exp(i h . R x) Exp(i h . t)

Exp(i h . t) is constant for a particular h and is calculated only once.

Only unique Exp(i h . R x) are calculated.

Trigonometric recurrence is used to calculate sines and cosines resulting in three cosine
and three sine operations per unique equivalent r. In other words, a sin and cos are not
calculated for each h; also a sin or cos function is equivalent to approximately 40 to 60
multiplies.

Rigid bodies 111

111 Rigid bodies

13. RIGID BODIES

[rigid]...
[point_for_site $site [ux | ua E] [uy | ub E] [uz | uc E]]...

[in_cartesian] [in_FC]
[z_matrix atom_1 [atom_2 E] [atom_3 E] [atom_4 E]]...
[rotate E [qx | qa E] [qy | qb E] [qz | qc E]]...

[operate_on_points $sites]
[in_cartesian] [in_FC]

[translate [tx | ta E] [ty | tb E] [tz | tc E]]...
[operate_on_points $sites]
[in_cartesian] [in_FC]
[rand_xyz !E]
[start_values_from_site $unique_site_name]

Rietveld or Pair Distribution Function refinement can comprise rigid bodies. Rigid bodies com-
prise points in space defined using z_matrix or point_for_site keywords or both simultane-
ously. Operations can be performed on these points using rotate and translate. Rigid body op-
erations include:

• Translating a rigid body or part of a rigid body.

• Rotating a rigid body or part of a rigid body around a point.

• Rotating a rigid body or part of a rigid body around a line.

ua, ub, uc, ta, tb, tc, qa, qb, qc and the parameters of z_matrix are all refinable parameters
which can comprise parameter attributes such as min/max. The directory RIGID contains rigid
body examples in *.RGD files. These files can be viewed and modified using the Rigid-Body-
Editor of the GUI.

rigid defines the start of a rigid body. point_for_site defines a point in space with Cartesian co-
ordinates given by the parameters ux, uy uz. Fractional equivalents can be defined using ua,
ub and uc. $site is the site that the point_for_site represents. z_matrix defines a point in space
with coordinates given in Z-matrix format as follows:

• E can be an equation, constant or a parameter name with a value.

• atom_1 specifies the site that the new Z-matrix point represents.

• The E after atom_2 specifies the distance in Å between atom_2 and atom_1. atom_2 must
exist if atom_1 is preceded by at least one point.

• The E after atom_3 specifies the angle in degrees between atom_3, atom_2 and atom_1.
atom_3 must exist if atom_1 is preceded by at least two points.

• The E atom_4 specifies the dihedral angle in degrees between the plane formed by atom_3-
atom_2-atom_1 and the plane formed by atom_4-atom_3-atom_2. This angle is drawn us-
ing the righthand rule with the thumb pointing in the direction atom_3 to atom_2. atom_4
must exist if atom_1 is preceded by at least three sites of the rigid body.

• If atom_1 is the first point of the rigid body then it is placed at Cartesian (0, 0, 0). If atom_1
is the second point of the rigid body then it is placed on the positive z-axis at Cartesian (0,

Rigid bodies 112

112 Rigid bodies

0, E) where E corresponds to the E in [atom_2 E]. If $atom_1 is the third point of the rigid-
body then it is placed in the x-y plane.

rotate rotates point_for_site’s an amount as defined by the rotate E equation around the vector
defined by the Cartesian vector qx, qy, qz. The vector can instead be defined in fractional co-
ordinates using qa, qb and qc. translate performs a translation of point_for_site’s an amount
in Cartesian coordinates equal to tx, ty, tz. The amount can instead be defined in fractional
coordinates using ta, tb and tc. rotate and translate operates on any previously defined
point_for_site’s; alternatively, point_for_site’s operated-on can be identified using oper-
ate_on_points. operate_on_points must refer to previously defined point_for_site’s (see sec-
tion 20.26 for a description of how to identify sites). in_cartesian or in_FC can be used to signal
coordinates are in Cartesian or fractional atomic coordinates respectively. When continue_af-
ter_convergence is defined, rand_xyz processes are initiated after convergence. It introduces
a random displacement to the translate fractional coordinates (tx, ty, tz) that are independent
parameters. The size of the random displacement is given by the current temperature multi-
plied by #displacement where #displacement is in Å. start_values_from_site initializes the val-
ues ta, tb, tc with corresponding values taken from the site named $unique_site_name.

13.1 ... Fractional, Cartesian and Z-matrix coordinates

Rigid bodies can be formulated using fractional or Cartesian coordinates. A Benzene ring with-
out Hydrogens can be formulated as follows:

prm a 1.3 min 1.2 max 1.4

rigid
 point_for_site C1 ux = a Sqrt(3) .5; uy = a .5;
 point_for_site C2 ux = a Sqrt(3) .5; uy = -a .5;
 point_for_site C3 ux = -a Sqrt(3) .5; uy = a .5;
 point_for_site C4 ux = -a Sqrt(3) .5; uy = -a .5;
 point_for_site C5 uy = a;
 point_for_site C6 uy = -a;
 Rotate_about_axies(@ 0, @ 0, @ 0) ‘ rotate previously defined points
 Translate(@ 0.1, @ 0.2, @ 0.3) ‘ translate previously defined points

The last two statements rotate and translates the rigid body as a whole; their inclusion is im-
plied if absent. A formulation of any complexity can be obtained from a) databases of existing
structures using fractional or Cartesian coordinates of structure fragments or b) from sketch
programs for drawing chemical structures. A Z-matrix representation of a rigid body explicitly
defines the rigid body in terms of bond lengths and angles. A Benzene ring is typically formu-
lated using two dummy atoms X1 and X2 as follows:

Rigid bodies 113

113 Rigid bodies

str ...
site X1 ... occ C 0
site X2 ... occ C 0
rigid

load z_matrix {
X1
X2 X1 1.0
C1 X2 1.3 X1 90
C2 X2 1.3 X1 90 C1 60
C3 X2 1.3 X1 90 C2 60
C4 X2 1.3 X1 90 C3 60
C5 X2 1.3 X1 90 C4 60
C6 X2 1.3 X1 90 C5 60

}

Atoms with occupancies fixed to zero are dummy atoms and do not take part in structure fac-
tor calculations. Importantly however dummy atoms take part in penalties. The mixing of
point_for_site and z_matrix keywords is possible as follows:

rigid
point_for_site X1
load z_matrix {

X2 X1 1.0
C1 X2 1.3 X1 90 ...

}

Z-matrix parameters are like any other parameter; they can be equations and parameter attrib-
utes can be assigned. For example, the 1.3 bond distance can be refined as follows:

rigid
point_for_site X1
load z_matrix {

X2 X1 1.0
C1 X2 c1c2 1.3 min 1.2 max 1.4 X1 90
C2 X2 = c1c2; X1 90 C1 60
C3 X2 = c1c2; X1 90 C2 60
C4 X2 = c1c2; X1 90 C3 60
C5 X2 = c1c2; X1 90 C4 60
C6 X2 = c1c2; X1 90 C5 60

}

This ability to constrain Z-matrix parameters using equations allow for great flexibility. For ex-
ample, Z-matrix bond length parameter could be written in terms of other bond length param-
eters whereby the average bond length is maintained. Or, in cases where a bond length is ex-
pected to change as a function of a site occupancy, an equation relating the bond length as a
function of the site occupancy parameter can be formulated.

13.2 ... Translating part of a rigid body

Once a starting rigid body model is defined, further translate and rotate statements can be
included to represent deviations from the starting model. For example, if the C1 and C2 atoms
are expected to shift by up to 0.1Å and as a unit then the following could be used:

Rigid bodies 114

114 Rigid bodies

rigid
 load z_matrix {
 X1
 X2 X1 1.0
 C1 X2 1.3 X1 90
 C2 X2 1.3 X1 90 C1 60
 C3 X2 1.3 X1 90 C2 60
 C4 X2 1.3 X1 90 C3 60
 C5 X2 1.3 X1 90 C4 60
 C6 X2 1.3 X1 90 C5 60
 }
 translate
 tx @ 0 min -0.1 max 0.1
 ty @ 0 min -0.1 max 0.1
 tz @ 0 min -0.1 max 0.1
 operate_on_points "C1 C2"

where the additional statements are in purple. The Cartesian coordinate representation allows
an additional means of shifting the C1 and C2 atoms by refining on the ux, uy and uz coordi-
nates directly, or,

prm a 1.3 min 1.2 max 1.4
prm t1 0 min -0.1 max 0.1
prm t2 0 min -0.1 max 0.1
prm t3 0 min -0.1 max 0.1
rigid
 point_for_site C1 ux = a Sqrt(3) 0.5 + t1; uy = a 0.5 + t2; uz = t3;
 point_for_site C2 ux = a Sqrt(3) 0.5 + t1; uy = -a 0.5 + t2; uz = t3;
 point_for_site C3 ux =-a Sqrt(3) 0.5; uy = a 0.5;
 point_for_site C4 ux =-a Sqrt(3) 0.5; uy = -a 0.5;
 point_for_site C5 uy = a;
 point_for_site C6 uy = -a;

13.3 ... Rotating part of a rigid body around a point

Many situations require the rotation of part of a rigid body around a point. An octahedra (Fig.
13-1), for example, typically rotates around the central atom with three degrees of freedom.
To implement such a rotation requires setting the origin at the central atom before rotation and
then resetting the origin after rotation. This is achieved using the Translate_point_amount
macro as follows:

prm r 2 min 1.8 max 2.2
rigid

point_for_site A0
point_for_site A1 ux = r;
point_for_site A2 ux = -r;
point_for_site A3 uy = r;
point_for_site A4 uy = -r;
point_for_site A5 uz = r;
point_for_site A6 uz = -r;
Translate_point_amount(A0, -) operate_on_points "A* !A0"
rotate @ 0 qa 1 operate_on_points "A* !A0"
rotate @ 0 qb 1 operate_on_points "A* !A0"
rotate @ 0 qc 1 operate_on_points "A* !A0"

Rigid bodies 115

115 Rigid bodies

Translate_point_amount(A0, +) operate_on_points "A* !A0"

The point_for_site keywords could just as well be z_matrix keywords with the appropriate Z-
matrix parameters. The first Translate_point_amount statement translates the specified
points (A1 to A6) an amount equivalent to the negative position of A0. This sets the origin for
these points to A0. The second resets the origin back to A0. If the A0 atom happens to be at
Cartesian (0, 0, 0) then there would be no need for the Translate_point_amount statements.

Fig. 13-1 Model of an ideal octahedron.

Further distortions are possible by refining on different bond-lengths between the central atom
and selected outer atoms. For example, the following macro describes an orthorhombic bipyr-
amid:

macro Orthorhombic_Bipyramide(s0, s1, s2, s3, s4, s5, s6, r1, r2) {
 point_for_site s0
 point_for_site s1 ux r1
 point_for_site s2 ux –r1
 point_for_site s3 uy r1
 point_for_site s4 uy –r1
 point_for_site s5 uz r2
 point_for_site s6 uz –r2
}

Note the two different lengths r1 and r2; with r1 = r2 this macro would describe a regular octa-
hedron.

13.4 ... Rotating part of a rigid body around a line

Instead of explicitly entering fractional or Cartesian coordinates, rigid bodies can be created
using the rotate and translate keywords. For example, two connected Benzene rings, a sche-
matic without Hydrogens is shown in Fig. 13-2, can be formulated as follows:

prm r 1.3 min 1.2 max 1.4
rigid
 point_for_site C1 ux = r;
 load point_for_site ux rotate qz operate_on_points {
 C2 =r; 60 1 C2
 C3 =r; 120 1 C3
 C4 =r; 180 1 C4
 C5 =r; 240 1 C5
 C6 =r; 300 1 C6

A3

A2 A1

A4

A5

A6

A0

Y

X
Z

Rigid bodies 116

116 Rigid bodies

 }
 point_for_site C7 ux = r;
 load point_for_site ux rotate qz operate_on_points {
 C8 =r; 60 1 C8
 C9 =r; 120 1 C9
 C10 =r; 300 1 C10
 }
 translate tx = 1.5 r; ty = r Sin(60 Deg);
 operate_on_points "C7 C8 C9 C10"

The points of the second ring can be rotated around the line connecting C1 to C2 with the fol-
lowing:

Rotate_about_points(@ 50 min -60 max 60, C1, C2, "C7 C8 C9 C10")

The min/max statements limit the rotations to 30 degrees. C5 can be rotated around the line
connecting C4 and C6 with the following:

Rotate_about_points(@ 40 min -50 max 50, C4, C6, C5)

Similar Rotate_about_points statements for each atom would allow for distortions of the Ben-
zene rings without changing bond distances.

Fig. 13-2. Model of two connected
Benzene rings

Another means of generating Fig. 13-2 and the one that requires the least thought is by using
the Duplicate_Point and Duplicate_rotate_z macros as follows:

prm r 1.3 min 1.2 max 1.4
rigid

point_for_site C1 ux = r;
Duplicate_rotate_z(C2, C1, 60)
Duplicate_rotate_z(C3, C2, 60)
Duplicate_rotate_z(C4, C3, 60)
Duplicate_rotate_z(C5, C4, 60)
Duplicate_rotate_z(C6, C5, 60)
Duplicate_Point(C7, C3)
Duplicate_Point(C8, C4)
Duplicate_Point(C9, C5)
Duplicate_Point(C10, C6)
Rotate_about_points(180, C1, C2, "C7 C8 C9 C10")

C7

C4 C8 C2

C1 C5

C3 C9

C6 C10

Rigid bodies 117

117 Rigid bodies

13.4.1 Using Z-matrix together with rotate and translate

Cyclopentadienyl (C5H5) is a well-defined molecular fragment which shows slight deviations
from a perfect five-fold ring (Fig. 13-3). The rigid body definition using point_for_site keywords
is as follows:

prm r1 1.19
prm r2 2.24
rigid

load point_for_site ux { C1 =r1; C2 =r1; C3 =r1; C4 =r1; C5 =r1; }
load point_for_site ux { H1 =r2; H2 =r2; H3 =r2; H4 =r2; H5 =r2; }
load rotate qz operate_on_points { 72 1 C2 144 1 C3 216 1 C4 288 1 C5 }
load rotate qz operate_on_points { 72 1 H2 144 1 H3 216 1 H4 288 1 H5 }

and using a typical Z-matrix representation:

rigid
load z_matrix {

X1
X2 X1 1
C1 X2 1.19 X1 90
C2 X2 1.19 X1 90 C1 72
C3 X2 1.19 X1 90 C2 72
C4 X2 1.19 X1 90 C3 72
C5 X2 1.19 X1 90 C4 72
X3 C1 1 X2 90 X1 0
H1 C1 1.05 X3 90 X2 180
H2 C2 1.05 C1 126 X2 180
H3 C3 1.05 C2 126 X2 180
H4 C4 1.05 C3 126 X2 180
H5 C5 1.05 C4 126 X2 180

}

This Z-matrix representation is typically used for Cyclopentadienyl; it allows for various torsion
angles but does not allow for all possibilities. For example, no adjustment of a single Z-matrix
parameter allows for displacement of the C1 atom without changing the C1-C2 and C1-C3
bond distances. The desired result however is possible using the Rotate_about_points macro:

Rotate_about_points(@ 0, C2, C3, "C1 H1")

Thus, the ability to include rotate and translate together with z_matrix gives great flexibility in
defining rigid bodies.

Rigid bodies 118

118 Rigid bodies

Fig. 13-3. Model of the idealized cyclopen-
tadienyl anion (C5H5).

13.5 ... The simplest of rigid bodies

The simplest rigid body comprises an atom constrained to move within a sphere; for a radius
of 1, this can be achieved as follows:

rigid
point_for_site Ca uz @ 0 min -1 max 1
rotate r1 10 qx 1
rotate r2 10 qx = Sin(Deg r1); qy = -Cos(Deg r1);

The coordinates are in fact spherical coordinates where the rotation parameters r1 and r2 are
communicative. When an atomic position is approximately known then constraining the atom
to within a sphere is useful. Setting the distance between two sites, or two sites A and B a dis-
tance 2Å apart can be formulated as:

In Z-matrix form: rigid
z_matrix A ‘ line 1
z_matrix B A 2 ‘ line 2
rotate @ 20 qa 1 ‘ line 3
rotate @ 20 qb 1 ‘ line 4
translate ta @ 0.1 tb @ 0.2 tc @ 0.3 ‘ line 5

In Cartesian form: rigid
point_for_site A ‘ line 1
point_for_site B uz 2 ‘ line 2
rotate @ 20 qa 1 ‘ line 3
rotate @ 20 qb 1 ‘ line 4
translate ta @ 0.1 tb @ 0.2 tc @ 0.3 ‘ line 5

Lines 1 and 2 defines the two points (note ux, uy and uz defaults to 0), line 3 and 4 rotates the
two points around the a and then the b lattice vectors. Line 5 translates the two points to a
position in fractional atomic coordinates of (0.1, 0.2, 0.3). Lines 3 to 5 contain the five param-
eters associated with this rigid body. The Set_Length macro can instead be used to set the
distance between the two sites as follows:

Set_Length(A, B, 2, @, @, @, @ 30, @ 30)

H3 H2

H4 H5

C3 C2

C4 C5
l
1

l
2

H1

C1

Y

X



Rigid bodies 119

119 Rigid bodies

where A and B are the site names, 2 is the distance in Å between the sites, arguments 4 to 6
the names given to the translation parameters, and arguments 7 and 8 are the rotational pa-
rameters. Set_Length is not supplied with the translate starting values; these are obtained
from the A site with the use of start_values_from_site located in the Set_Length macro.
min/max can be used to constrain the distance between the two sites, for example:

Set_Length(A, B, @ 2 min 1.9 max 2.1, @, @, @, @ 30, @ 30)

Note, this macro defines the distance between the two sites as a parameter that can be re-
fined.

13.6 ... Generation of rigid bodies

A rigid body is constructed by the sequential processing of z_matrix, point_for_site, rotate and
translate operations. The body is then converted to fractional atomic coordinates and then the
symmetry operations of the space group applied. The conversion of Z-matrix coordinates to
Cartesian is as follows:

• The first atom is paced at the origin.

• The second atom, if defined, is placed on the positive z-axis.

• The third atom, if defined, is placed in the x-z plane.

For Cartesian to fractional coordinates, in terms of the lattice vectors, we have:

• x-axis in the same direction as the a lattice vector.

• y-axis in the a-b plane.

• z-axis in the direction defined by the cross product of a and b.

Rotation operations are not commutative; the rotation of point A about the vector B-C and then
about D-E is not the same as the rotation of A about D-E and then about B-C. By default, rotate
and translate operate on all previously defined point_for_site’s. Alternatively point_for_site’s
can be explicitly defined using operate_on_points. operate_on_points must refer to previously
defined point_for_site’s and it can refer to many sites at once by enclosing the site names in
quotes and using the wild card character ‘*’ or the negation character ‘!’ (see section 20.26),
for example:

operate_on_points "Si* O* !O2"

13.7 ... Rigid body parameter errors propagated to fractional coordinates

Errors for fractional coordinates for sites defined as part of a rigid body are propagated to the
site fractional coordinates. The example RIGID-ERRORS\ANILINE_I_100K_X.INP (by Simon Par-
sons) demonstrates the equivalence of two refinements 1) using a rigid body and 2) hand cod-
ing the fractional coordinates in terms of rigid body parameters but not in fact using a rigid
body. Errors and convergence behaviour in both cases are identical. Case (2), which has many
computer algebra equations, takes approximately the same time per iteration as case (1); this

Rigid bodies 120

120 Rigid bodies

demonstrates that computer algebra often does not noticeably affect computational speed
even in cases where its use is plentiful.

13.8 ... Z-matrix collinear error information

The Z-matrix collinear points exception can be deciphered using information displayed on de-
tection of the error. The collinear error is due to three atoms on a z-matrix line which are col-
linear. The information displayed includes a snapshot of the rigid body operations pertaining
to the error. The following is an example of the information displayed:

DB_x_CB Zero dot product - Z-matrix possible collinear points at atoms
O10
C16 8.91631604e-016 1.0912987e-014 5.2
C15 3.72315026e-016 1.0912987e-014 3.9
C11 0 0 0

Partial z-matrix in error:
rigid

z_matrix C11
z_matrix C12 C11 1.3
z_matrix C13 C12 1.3 C11 120
z_matrix C14 C13 1.3 C12 120 C11 180
z_matrix C15 C14 1.3 C13 120 C11 0
z_matrix C16 C15 1.3 C14 120 C11 180
z_matrix O10 C16 1 C15 108 C11 120

The rigid body fragment can be copied to the Rigid-body editor to investigate why the error oc-
curs, i.e.

The O10 line is commented out as it is the line causing the error. Looking at the O10 line (using
the OpenGL window), we see that atoms C16, C15, C11 lie on a straight line; this is invalid as
it becomes impossible to form a dihedral angle in a non-degenerate manner. The best way to
think about a z-matrix line with 4 atoms A, B, C, D, i.e.

z_matrix A B # C # D #

is to think of two triangles ABC and DBC hinged along the line BC. The angle between the tri-
angles is the dihedral angle. If B,C,D are collinear then there’s no triangle and the dihedral an-
gle cannot be formed. Thus, for z-matrices both A,B,C and B,C,D must not be collinear. The
program tests for a zero dot-product numerically with a tolerance of 10-15.

Rigid bodies 121

121 Rigid bodies

13.9 ... Functions allowing access to rigid-body fractional coordinates

The standard macro Point(site_name, rx), see TOPAS.INC, returns the x Cartesian coordinate
of the point called site_name; y and z Cartesian coordinates are returned by ry and rz objects
respectively. These functions can only to be used in equations of the rigid body which en-
compass the keywords and their dependents of point_for_site, z_matrix, translate and rotate.
The actual value returned by Point depends on where it is used in the rigid-body, for example,
in the following:

rigid
point_for_site O1
translate tx 1
point_for_site O2 ux = Point(O1, rx); ‘ Point here returns 1
translate tx 2
point_for_site O3 ux = Point(O1, rx); ‘ Point here returns 3

the final x Cartesian coordinate of site O3 becomes 3. To instead return fractional coordinates
of points, the functions Point_rx_ua, Point_rx_ub and and Point_rx_ua can be used. These
functions are passed the address of the point in question using the Point macro with one ar-
gument. Accompanying macros simplifying the call, as defined in TOPAS.INC, are:

macro Point_ua(site_name) { Point_rx_to_ua(Point(site_name)) }
macro Point_ub(site_name) { Point_ry_to_ub(Point(site_name)) }
macro Point_uc(site_name) { Point_rz_to_uc(Point(site_name)) }

These macros can return many different values for the same point in question depending on
when they are called during the rigid body calculation.

13.10 . Determining the orientation of a known fragment

TEST_EXAMPLES\RIGID\MATCH.INP determines rotation and translation parameters for a
known fragment. The known fragment is in fractional coordinates. To do the same for a frag-
ment in Cartesian coordinates then change the lattice angles to 90 degrees and adjust the lat-
tice parameter lengths. Also, see:

http://topas.dur.ac.uk/topaswiki/doku.php?id=rigid_body_-_matching_to_a_known_fragment

13.11 . Rigid body macros

Set_Length(s0, s1, r, xc, yc, zc, cva, cvb)

Fixes the distance between two sites.

[s0, s1]: Site names.

[r]: Distance in Å.

[xc, yc, zc]: The parameter names for the coordinates of s0.

[cva, cvb]: Parameter names and values for rotations about the x and y axes

http://topas.dur.ac.uk/topaswiki/doku.php?id=rigid_body_-_matching_to_a_known_fragment

Rigid bodies 122

122 Rigid bodies

Set_Lengths(s0, s1, s2, r, xc, yc, zc, cva1, cvb1, cva2, cvb2)
Set_Lengths(s0, s1, s2, s3, r, xcv, ycv, zcv, cva1, cvb1, cva2, cvb2, cva3, cvb3)

Sets the distance between two and three sites, respectively. The two sites case is defined
as:

macro Set_Lengths(s0, s1, s2, r, xc, yc, zc,cva1, cvb1, cva2, cvb2)
{
 Set_Length(s0, s1, r, xc, yc, zc, cva1, cvb1)
 Set_Length(s0, s2, r, xc, yc, zc, cva2, cvb2)
}

Triangle(s1, s2, s3, r)
Triangle(s0, s1, s2, s3, r)
Triangle(s0, s1, s2, s3, r, xc, yc, zc, cva, cvb, cvc)

Defines a regular triangle without and with a central atom (s0).

[s0, s1, s2, s3]: Site names. s0 is the central atom of the triangle.

[r]: Distance in Å.

[xc, yc, zc]: Parameter names for the coordinates for the central atom.

[cva, cvb, cvc]: Parameter names and values for rotations about the x, y and z axes.

Tetrahedra(s0, s1, s2, s3, s4, r, xc, yc, zc, cva, cvb, cvc)

Defines a tetrahedra with a central atom.

[s0, s1, s2, s3, s4]: Site names. s0 is the central atom of the tetrahedra.

[r]: Distance in Å.

[xc, yc, zc]: Parameter names for the coordinates for the central atom.

[cva, cvb, cvc]: Parameter names and values for rotations about the x, y and z axes.

Octahedra(s0, s1, s2, s3, s4, s5, s6, r)
Octahedra(s0, s1, s2, s3, s4, s5, s6, r, xc, yc, zc, cva, cvb, cvc)

Defines an octahedra with a central atom.

[s0, s1, s2, s3, s4, s5, s6]: Site names. s0 is the central atom of the octahedra.

[r]: Distance in Å.

[xc, yc, zc]: Parameter names for the coordinates for the central atom.

[cva, cvb, cvc]: Parameter names and values for rotations about the x, y and z axes.

Hexagon_sitting_on_point_in_xy_plane(s1, s2, s3, s4, s5, s6, a)
Hexagon_sitting_on_side_in_xy_plane(s1, s2, s3, s4, s5, s6, a)

Defines a regular hexagon, where the hexagon is sitting on a point or on a side in the x-y
plane, respectively.

[s1, s2, s3, s4, s5, s6]: Site names.

[a]: Distance in Å.

Rigid bodies 123

123 Rigid bodies

Translate(acv, bcv, ccv)
Translate(acv, bcv, ccv, ops)

Performs a translation of the rigid body.

[acv, bcv, ccv]: Amount of the translation in fractional coordinates.

[ops]: Operates on previously defined sites in “ops”.

Translate_with_site_start_values(s0, xc, yc, zc)

Performs a translation using the coordinates of s0 as start values.

[s0]: Site name.

[xc, yc, zc]: Parameter names for the coordinates of s0.

Rotate_about_points(cv, a, b)
Rotate_about_points(cv, a, b, pts)

Performs a rotation about a rotation vector specified by two sites.

[cv]: Amount the rigid body is rotated about the specified rotation vector in degrees.

[a, b]: Rotation vector defined by the sites a and b.

[pts]: Operates on previously defined point_for_site(s).

Note: Do not include points rotated about in the “operate on points” list of the Ro-
tate_about_points macro. For example, in

Rotate_about_points(@ 1 0, C1, C2, " C3 C4 C5 C6 ")

the points C1 and C2 are not included in the “points operated on” list. Note also that Ro-
tate_about_points without a “points operated on” list will operate on all previously defined
point_for_site(s). Therefore, when an “operate on points” list is not defined then it is neces-
sary to place the “points rotated about” after the Rotate_about_points macro. It is best to
specify an “operate on points” list when in doubt.

Rotate_about_these_points(cv, a, b, ops)

Performs a rotation about a rotation vector specified by two sites.

[cv]: Amount the rigid body is rotated about the specified rotation vector in degrees.

[a, b]: Rotation vector defined by the sites a and b.

[ops]: Operates on previously defined point_for_site(s).

Rotate_about_axies(cva, cvb)
Rotate_about_axies(cva, cvb, cvc)

Performs a rotation about the axes.

Indexing 124

124 Indexing

14. INDEXING
The following algorithm is based on the iterative method of Coelho (2003). Unlike lp_serach it
requires the extraction of d-spacings. The INDEXING directory contains example INP files, ex-
ample usage is as follows:

index_zero_error
try_space_groups "2 75"
load index_d {
 8.912
 7.126
 4.296
 ...
}

Individual space groups can be tried or for simplicity all Bravais lattices can be tried using
standard macros as follows:

Bravais_Cubic_sgs
Bravais_Trigonal_Hexagonal_sgs
Bravais_Tetragonal_sgs
Bravais_Orthorhombic_sgs
Bravais_Monoclinic_sgs
Bravais_Triclinic_sgs

To try all unique extinction subgroup space-groups, a more exhaustive approach, then the fol-
lowing macros can be used:

Unique_Cubic_sgs
Unique_Trigonal_Hexagonal_sgs
Unique_Tetragonal_sgs
Unique_Orthorhombic_sgs
Unique_Monoclinic_sgs
Unique_Triclinic_sgs

On termination of Indexing a *.NDX file is created, with a name corresponding to the name of
the INP file and placed in the same directory as the INP file. The *.NDX file contains solutions
as well as a detailed summary of the best 20 solutions. Here’s an example of an NDX file:

‘ Indexing method - Alan Coelho (2003), J. Appl. Cryst. 36, 86-95
‘ Time: 2.015 seconds
 ‘Sg Status UNI Vol Gof Zero Lps ...
Indexing_Solutions_With_Zero_Error_2 {
 0) P42/nmc 3 0 1187.321 38.82 0.0000 11.1924 ...
 1) P42/nmc 3 0 1187.057 38.64 0.0000 11.1896 ...
 2) P42/nmc 3 0 1187.458 38.61 0.0000 11.1914 ...

...
}
/*
==
 0) P-1 0 985.652 30.80 0.0111 7.0877 ...

 h k l dc do do-dc 2Thc 2Tho 2Tho-2Thc
 0 0 1 15.857 15.830 -0.027 5.569 5.578 0.009

Indexing 125

125 Indexing

 0 1 0 8.765 8.750 -0.015 10.084 10.101 0.017
...

*/

14.1 ... Figure of merit

The figure of merit M used in indexing is as follows:

𝑀 = [(1 + 𝑁𝑢𝑛𝑖)𝑑𝑜,𝑚𝑖𝑛
2 (

𝑁𝑐

𝑁𝑜
) ∑|𝑑𝑜,𝑖

2 − 𝑑𝑐,𝑖
2 |𝑄𝑖

𝑖

]

−1

where 𝑄𝑖 = 𝑤𝑖𝑁𝑜 ∑ 𝑤𝑗𝑗⁄

(14-1)

Where do and dc are the observed and calculated d-spacings, No and Nc the number of ob-
served and calculated lines used, Nuni the number of unindexed lines and the summations are
over the used observed indexing lines. Qi is a weighting that assists in the determination of
extinction subgroups where wi could for example be the inverse of the error in the peak posi-
tions from a Pawley refinement (see INDEXING\MGIR\INDEX.INP). index_I correspond to wi. The
formulation of Qi is such that with or without Qi the figure of merit M is of the same order of
magnitude. The reciprocal-space lattice relationship solved during the indexing process (Coe-
lho, 2000) includes Q as follows:

[𝑋ℎℎℎ2 + 𝑋𝑘𝑘𝑘2 + 𝑋𝑙𝑙𝑙
2 + 𝑋ℎ𝑘ℎ 𝑘 + 𝑋ℎ𝑙ℎ 𝑙 + 𝑋𝑘𝑙𝑘 𝑙 +

4 𝜋𝑍𝑒

360𝜆2
𝑠𝑖𝑛(2𝜃)] 𝑊ℎ𝑘𝑙 =

𝑊ℎ𝑘𝑙

𝑑𝑜
2

where 𝑊ℎ𝑘𝑙 = 𝑄ℎ𝑘𝑙𝑑𝑜
𝑚|𝛥2𝜃ℎ𝑘𝑙|

(14-2)

14.2 ... Extinction subgroup determination

At the end of an indexing run further indexing runs are internally performed across extinction
subgroups (see section 14.8) to determine the most likely subgroup. These internal runs are
seeded with already determined lattice parameters and in most cases the correct extinction
subgroup is obtained without the need for Qi in Eq. (14-1). Extinction subgroups can be explic-
itly searched using the macros defined TOPAS.INC, see for example Unique_Orthorhom-
bic_sgs.

14.3 ... Reprocessing solutions - DET files

Details of solutions can be obtained at a later stage by including solution lines, found in the
NDX file, in the INP file. For example, supposing details of solutions 50 and 51 were sought then
the following (see example INDEXING\EX10.INP) could be used:

Indexing 126

126 Indexing

index_lam 1.540596
index_zero_error
try_space_groups 2
Indexing_Solutions_With_Zero_Error_2 {
 50) P-1 1 0 2064.788 9.74 0.0000 ...
 51) P-1 3 0 3128.349 9.61 0.0115 ...
}
load index_d {
 15.83 good
 8.75
 7.91
 ...
}

After running this INP file, a *.DET file is created containing details of the supplied solutions.

14.4 ... Keywords and data structures

Tindexing
[index_lam !E1.540596]
[index_min_lp !E2] [index_max_lp !E]
[index_max_Nc_on_No !E5]
[index_max_number_of_solutions #3000]
[index_max_th2_error !E0.05]
[index_max_zero_error #0.2]
[index_th2 !E | index_d !E]...

[index_I E1 [good]]
[index_x0 !E]
[index_zero_error]
[no_extinction_subgroup_search]
[seed [#]]
[try_space_groups $]...

[x_angle_scaler #0.1]
[x_scaler #]

Values for most keywords are automatically determined or have defaults (appearing as num-
bers to the right) adequate for difficult indexing problems. In the following example from UPPW
(service provided by Armel Le Bail to the SDPD mailing list at http://sdpd.univ-
lemans.fr/uppw/), only a few keywords are necessary. Also note the use of dummy; this allows
for the exclusion of 2 and I values without having to edit the columns of data.

http://sdpd.univ-lemans.fr/uppw/
http://sdpd.univ-lemans.fr/uppw/

Indexing 127

127 Indexing

seed
index_lam 0.79776
index_zero_error
index_max_Nc_on_No 6
try_space_groups 3
load index_th2 dummy dummy index_I dummy {

‘ d (A) 2Theta Height Area FWHM
1.724 26.50645 2758.3 23303.7 0.0450
2.646 17.27733 150393.8 747063.6 0.0250
3.235 14.13204 98668.8 493153.7 0.0250
3.417 13.37776 11102.6 53185.0 0.0250
5.190 8.80955 782.7 3910.9 0.0250
...

}

14.5 ... Keywords in detail

[index_lam !E1.540596]

Defines the wavelength in Å.

[index_min_lp !E2.5] [index_max_lp !E]

Defines the minimum and maximum allowed lattice parameters. The maximum is typically
automatically determined.

[index_max_Nc_on_No !E5]

Determines the maximum ratio of the number of calculated to observed lines. The value of
6 allows for up to 83% of missing lines.

[index_max_number_of_solutions #1000]

The number of best solutions to keep.

[index_max_th2_error !E0.05]

Used for determining impurity lines (un-indexed lines UNI in *.NDX). Large values, 1 for ex-
ample, forces the consideration of more observed input lines. For example, if it is known
that there are none or maybe just one impurity line then a large value for index_max_th2_er-
ror will speed up the indexing procedure.

[index_max_zero_error !E0.2]

Excludes solutions with zero errors greater than index_max_zero_error.

[index_th2 !E | index_d !E]...
[index_I E1 [good]]

index_th2 or index_d defines a reflection entry in 2 degrees or d-spacing in Å. index_I is
typically set to the area under the peak; it is used to weight the reflection. good signals that
the corresponding d-spacing is not an impurity line. A single use of good on a large d-

Indexing 128

128 Indexing

spacing decreases the number of possible solutions and hence speeds up the indexing
process (see example INDEXING\EX10.INP).

[index_x0 !E]

Defines Xhh in the reciprocal lattice equation of (14-1). In a triclinic lattice the largest d-
spacing can probably be indexed as 100 or 200 etc. Thus

index_x0 = 1/(dmax)^2;

speeds up the indexing process (if, in this case, the first line can be indexed as 100) and
additionally the chance of finding the correct solution is enhanced, see EX13.INP. Note, if
the data is in 2Th degrees then the following can be used:

index_x0 = (2 Sin(2Thmin Pi/360) / wavelength))^2;

The two macros Index_x0_from_d and Index_x0_from_th2 simplify the use of index_x0.

[index_zero_error]

Includes a zero error.

[no_extinction_subgroup_search]

By default, Extinction subgroup determination is performed at the end of an indexing run;
this can be negated by defining no_extinction_subgroup_search.

[seed [#]]

Seeds the random number generator.

[try_space_groups $]...
[x_angle_scaler #0.1]
[x_scaler #]

Defines the space groups to be searched. The macros Bravais_Cubic_sgs etc... (see
TOPAS.INC) defines lowest symmetry Bravais space groups. It is typically sufficient to use
only these. Higher symmetry space groups for the Bravais lattices corresponding to the 10
best solutions is automatically searched at the end of an indexing run. Here are some ex-
amples of using try_space_groups.

Search Use

Primitive monoclinic try_space_groups 3

Monoclinic Bravais lattices of lowest symmetry Bravais_Monoclinic_sgs

C-centered monoclinic of lowest symmetry try_space_groups 5

All orthorhombic space groups individually Unique_Orthorhombic_sgs

Indexing 129

129 Indexing

x_scaler is a scaling factor used for determining the number of steps to search in parameter
space. x_scaler needs to be less than 1. Increasing x_scaler searches parameter space in
finer detail. Default values are as follows:

Cubic 0.99
Hexagonal/Trigonal 0.95
Tetragonal 0.95

Orthorhombic 0.89
Monoclinic 0.85
Triclinic 0.72

x_angle_scaler is a scaling factor for determining the number of angular steps for mono-
clinic and triclinic space groups. Small values, 0.05 for example, increases the number of
angular steps. The default value of 0.1 is usually adequate.

14.6 ... Identifying dominant zones

Here are two example output lines from an NDX file.

0) P42/nmc 3 0 1187.124 38.82 0.000 11.1904 11.1904 9.4799 90.00 90.00 90.00 ‘ === 24 19
6) P-421c 3 0 1187.124 35.67 0.000 11.1904 11.1904 9.4799 90.00 90.00 90.00 ‘ === 24 19

- The 1st column corresponds to the rank of the solution.

- The 2nd corresponds to the space group.

- The 3rd corresponds to the Status of the solution as follows:

 Status 1: Weighting applied as defined in Coelho (2003).

 Status 2: Zero error attempt applied.

 Status 3: Zero error attempt successful and impurity lines removal successful.

 Status 4: Impurity line(s) removed.

- The 4th column corresponds to the number of un-indexed lines.

- The 5th column corresponds to the volume of the lattice.

- The 6th corresponds to the goodness of fit value.

- The 7th corresponds to the zero error if index_zero_error is included.

- Columns 8 to 13 contains the lattice parameters.

The last two columns, let call them column Q1 and Q2, contain the number of non-zero (h2 + k2
+ h k) and l2 values, respectively, used in the indexed lines. Q1 and Q2 represent the hkl coeffi-
cient for X0 and X1 respectively for Trigonal/Hexagonal systems. When Q1=-999 or Q2=-999
then the corresponding lattice parameters are not represented. This facility is useful for iden-
tifying dominant zones. For example, if the smallest lattice parameter is 3Å and the smallest
d-spacings is 4Å then it is impossible to determine the small lattice parameter. In such cases
values of –999 will be obtained. The following table gives the hkl coefficients corresponding to
the Xnn reciprocal lattice parameters for the 7 crystal systems.

 X0 X1 X2 X3 X4 X5

Cubic h2+k2+l2

Hexagonal, Trigonal h2+k2+h k l2

Indexing 130

130 Indexing

Tetragonal h2+k2 l2

Orhtorhombic h2 k2 l2

Monoclinic h2 k2 l2 h l

Triclinic h2 k2 l2 h k h l k l

14.7 ... *** Probable causes of Failure ***

The most probable cause of failure is the inclusion of too many d-spacings. If it is assumed that
the smallest lattice parameter is greater than 3Å then it is problematic to include d-spacings
with values less than about 2.5Å when there are already 30 to 40 reflections with d values
greater than 2.5Å. Some of the problems caused by very low d-spacings are:

• The number of calculated lines increases dramatically and thus index_max_Nc_on_No will
need to be increased.

• The low d-spacings are probably inaccurate due to peak overlap.

A situation where it is necessary to include low d-spacings is when there are only a few d-spac-
ings available as in higher symmetry lattices.

14.8 ... Space groups with identical absences – Extinction subgroups

The following table lists spaces groups than have identical hkls. Typically, an indexing run will
identify one space-group from the extinction group.

Space group numbers with

identical hkls

Space group symbols with

identical hkls

Triclinic

1 2 P1 P-1

Monoclinic

9 15 Cc C2/c

5 8 12 C2 Cm C2/m

14 P21/c

7 13 Pc P2/c

4 11 P21 P21/m

3 6 10 P2 Pm P2/m

Orthorhombic

70 Fddd

43 Fdd2

22 42 69 F222 Fmm2 Fmmm

68 Ccca

73 Ibca

37 66 Ccc2 Cccm

45 72 Iba2 Ibam

41 64 Aba2 Cmca

Indexing 131

131 Indexing

46 74 Ima2 Imma

36 40 63 Cmc21 Ama2 Cmcm

39 67 Abm2 Cmma

20 C2221

23 24 44 71 I222 I212121 Imm2 Immm

21 35 38 65 C222 Cmm2 Amm2 Cmmm

52 Pnna

56 Pccn

60 Pbcn

61 Pbca

48 Pnnn

54 Pcca

50 Pban

33 62 Pna21 Pnma

34 58 Pnn2 Pnnm

32 55 Pba2 Pbam

30 53 Pnc2 Pmna

29 57 Pca21 Pbcm

27 49 Pcc2 Pccm

31 59 Pmn21 Pmmn

26 28 51 Pmc21 Pma2 Pmma

19 P212121

18 P21212

17 P2221

16 25 47 P222 Pmm2 Pmmm

Tetragonal

142 I41/acd

110 I41cd

141 I41/amd

109 122 I41md I-42d

108 120 140 I4cm I-4c2 I4/mcm

88 I41/a

80 98 I41 I4122

79 82 87 97 107 119 121 139 I4 I-4 I4/m I422 I4mm I-4m2 I-42m I4/mmm

130 P4/ncc

126 P4/nnc

133 P42/nbc

103 124 P4cc P 4/mcc

104 128 P4nc P 4/mnc

106 135 P42bc P 42/mbc

137 P42/nmc

138 P42/ncm

134 P42/nnm

125 P4/nbm

114 P-421c

105 112 131 P42mc P-42c P42/mmc

Indexing 132

132 Indexing

102 118 136 P42nm P-4n2 P42/mnm

101 116 132 P42cm P-4c2 P42/mcm

100 117 127 P4bm P-4b2 P4/mbm

86 P42/n

85 129 P4/n P4/nmm

92 96 P41212 P43212

94 P42212

76 78 91 95 P41 P43 P4122 P4322

77 84 93 P42 P 42/m P4222

90 113 P4212 P-421m

75 81 83 89 99 111 115 123 P4 P-4 P4/m P422 P4mm P-42m P-4m2 P4/mmm

Trigonal & Hexagonal

161 167 R3c R-3c

146 148 155 160 166 R3 R-3 R32 R3m R-3m

184 192 P6cc P6/mcc

159 163 186 190 194 P31c P-31c P63mc P-62c P63/mmc

158 165 185 188 193 P3c1 P-3c1 P63cm P-6c2 P63/mcm

169 170 178 179 P61 P65 P6122 P6522

144 145 151 152 153 154 171 172 180 181 P31 P32 P3112 P3121 P3212 P3221 P62 P64 P6222 P6422

173 176 182 P63 P63/m P6322

143 147 149 150 156 157 162 164 168 174 175

177 183 187 189 191

P3 P-3 P312 P321 P3m1 P31m P-31m P-3m1 P6 P-6 P6/m

P622 P6mm P-6m2 P-62m P6/mmm

Cubic

228 Fd-3c

219 226 F-43c Fm-3c

203 227 Fd-3 Fd-3m

210 F4132

196 202 209 216 225 F23 Fm-3 F432 F-43m Fm-3m

230 Ia-3d

220 I-43d

206 Ia-3

214 I4132

197 199 204 211 217 229 I23 I213 Im-3 I432 I-43m Im-3m

222 Pn-3n

218 223 P-43n Pm-3n

201 224 Pn-3 Pn-3m

205 Pa-3

212 213 P4332 P4132

198 208 P213 P4232

195 200 207 215 221 P23 Pm-3 P432 P-43m Pm-3m

14.9 ... Indexing Equations - Background

a, b and c lattice vectors can be converted to Cartesian coordinates with a collinear with the
Cartesian x axis and b coplanar with the Cartesian x-y plane as follows:

Indexing 133

133 Indexing

a = ax i b = bx i + by j c = cx i + cy j + cz k (14-3)

where

ax = a

bx = b cos(), by = b sin()

cx = c cos(), cy = c (cos() – cos() cos()) / sin(), cz
2 = c2 − (cx)2– (cy)2

a, b, c are the lattice parameters and , ,  the lattice angles. The reciprocal lattice vectors A,
B, and C calculated from the lattice vectors of Eq. (14-3) become:

A = Ax i + Ay j + Az k B = By j + Bz k C = Cz k

The equation relating d-spacing dhkl to hkl in terms of the reciprocal lattice parameters is:

𝑋ℎℎℎ2 + 𝑋𝑘𝑘𝑘2 + 𝑋𝑙𝑙𝑙
2 + 𝑋ℎ𝑘ℎ 𝑘 + 𝑋ℎ𝑙ℎ 𝑙 + 𝑋𝑘𝑙𝑘 𝑙 = 1 𝑑ℎ𝑘𝑙

2⁄ (14-4)

where

𝑋ℎℎ = 𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2

𝑋𝑘𝑘 = 𝐵𝑦
2 + 𝐵𝑧

2

𝑋𝑙𝑙 = 𝐶𝑧
2

𝑋ℎ𝑘 = 2𝐴𝑦𝐵𝑦 + 2𝐴𝑧𝐵𝑧

𝑋ℎ𝑙 = 2𝐴𝑧𝐶𝑧

𝑋𝑘𝑙 = 2𝐵𝑧𝐶𝑧

Energy Minimization 134

134 Energy Minimization

15. ENERGY MINIMIZATION

15.1 ... Reporting on the Madelung constant

str…

[madelung #]
Examples

TEST_EXAMPLES\MADELUNG.INP

The madelung keyword reports on the Madelung constant of a structure (Madelung, 1918). It uses
the method of Coelho & Cheary (1997) for calculating the electrostatic potentials. Atomic
charges are from the occ keyword, see MADELUNG.INP. #define show_GRS in MADELUNG.INP
creates an XY file with (S2-S1) of the GRS series set to 0.01. This is a small value that shows the
behaviour of the GRS series which is as follows (blue line):

With the default values of S1 =1 and S2 = 1.5; the GRS series integrates between S1 and S2 to
obtain an accurate value for the Madelung constant; this is seen in the first point of the Red
line of the above plot. In energy minimization, the derivatives of the Madelung constant as a
function of atomic coordinates constitutes the electrostatic force exerted on atoms.

15.2 ... Reporting on the Coulomb potential at a site

site … [co #]

The site dependent keyword co reports on the Coulomb potential at a site. The sum of all co values
equates to the Madelung constant. From observation, atoms of the same species seem to have
similar co values in an ionic crystal. Note, both the co and madelung keywords are independent
of the grs_interaction keyword.

Madelung constant for Rutile

S2 (Angstroms)

32.82.62.42.221.81.61.41.21

M
a
d

e
lu

n
g

 c
o

n
st

a
n

t

-19.6

-19.605

-19.61

-19.615

-19.62

-19.625

Energy Minimization 135

135 Energy Minimization

15.3 ... Enhancements to the grs_interaction

site … [g !N q E s E]
[repulsion_refine]
[grs_interaction [qi !E qj !E] $s1 $s2 c !E]…

[no_coulomb]
[penalty = Get(grs_lp_rep);]
[penalty = Get(grs_lp_refine);]

Examples

TEST_EXAMPLES\
ALVO4-GRS-AUTO.INP (not new)
GRS-ALVO4\SOLVE-1.INP
GRS-ALVO4\REP-1.INP
GRS-ALVO4\REP-2.INP

The site dependent keyword g reports on the difference in value between the sum of all grs_inter-
cations with the site included, and the site excluded. In other words, it reports on the site’s contri-
bution to all grs_interactions.

When repulsion_refine is defined, then all grs_interactions are placed in a “repulsion refine”
mode. In this mode, grs_interactions return the sum of the derivatives squared of the grs_in-
teractions, with respect to the atomic coordinates, or, in pseudo code:

Sum(dgrs_interaction/dfi, i)2

where fi corresponds to the x, y and z coordinates of the sites associated with the grs_interac-
tion. In this manner, a refinement will adjust repulsion parameters such that the derivatives of
the grs_interactions with respect to independent repulsion parameters are a minimum.

Repulsion parameters include qi, qj, q, s and any other parameters defined in the grs_interac-
tion equation. The new site dependent keyword, s, scales the equation part of grs_interac-
tions. This simplifies the setting up of grs_interactions; consider the following:

grs_interaction qi = 3; qj = -2; Al* O* p1 = B1 / R^7; penalty = p1;
grs_interaction qi = 5; qj = -2; V* O* p2 = B2 / R^7; penalty = p2;
grs_interaction qi = 3; qj = 5; Al* V* p3 = B3 / R^7; penalty = p3;

Here, there are three parameters B1, B2 and B3. In the repulsion_refine mode, fractional coor-
dinates are not refined. However, their derivatives with respect to the grs_interaction equa-
tions are expensive and are required. The site dependent s parameters can be used to avoid
this recalculation as follows:

site Al … q 3 s s1 1
site V … q 5 s s2 1
site O … q -2 s s3 1
repulsion_refine
grs_interaction * * c = 1/R^9;
penalty = c;

Note the reformulation where three grs_interactions become one. Here the program examines
the equation, 1/R^9 in this case, and, if independent of refined parameters, the program stores
the 1/R^9 values for use in the calculation of derivatives of the grs_intercations equations with
respect to repulsion refined parameters. This results in a large speed up in computation. The
three parameters s1, s2 and s3 are related to the B1, B2 and B3 values as follows:

B1 = s1 s3

Energy Minimization 136

136 Energy Minimization

B2 = s2 s3
B3 = s1 s2

These parameters are related to the minimum distance Ro between two isolated atoms i and j,
and for the case of opposite q charges, as follows:

Uij = qi qj / R + si sj / Rn

Setting the derivative to zero:

dUij(R=Ro)/dR = 0

we get:

Ro = [(n-1) si sj / (qi qj)] 1/(n-1)

15.4 ... Including lattice parameter in grs_interaction(s)

The default is to not include lattice parameters when repulsion_refine is defined. To include
the minimization of derivatives of the grs_interactions with respect to the lattice parameters,
the following can be used:

penalty = Get(grs_lp_rep); : 0

For normal refinement (repulsion_refine not defined), lattice parameters, flagged for refine-
ment, are included in the derivatives of grs_interactions if the following is included:

penalty = Get(grs_lp_refine); : 0

15.5 ... Ignoring the Coulomb part of the grs_intercation

The Coulomb part of the grs_interaction can be ignored using the no_coulomb keyword. This
is useful for materials that are not wholly ionic. Various version of the Lennard Jones potential,
for example, can be implemented; consider a potential U of:

U = A / R6 + B/R12

To efficiency calculates this U, then two grs_intercations can be used:

site... q 1 s @ 1
site... q -1 s @ 1
grs_interaction … = 1 /R^4; no_coulomb
grs_interaction … = 1 /R^9; no_coulomb

Here, 1/R^4 and 1/R^9 values are stored in lookup tables which are calculated once at the
start of refinement. This potential is used in describing the partly ionic structure of AlVO4, see
GRS-ALVO4\REP-2.INP.

The grs_interaction equation can also be set to zero. This may be useful when looking at dipole
properties of a molecule where the centre of the electron cloud is at a different position from
the nucleus, for example:

Energy Minimization 137

137 Energy Minimization

site Al1 x x1 # y y1 # z z1 # …
site Al1_shift x = dx1 x1; y = dy1 + y1; z = dz1 + z1; …
grs_interaction … Al1 = 0; ‘ No repulsion equation
grs_interaction … Al1_shift = 1 /R^9; no_coulomb ‘ No Coulomb potential

15.6 ... _rem attribute - Removing/inserting parameters from refinement

The _rem parameter attribute is an equation that is evaluated at the start of a refinement iter-
ation (note: attribute equations cannot be named). If non-zero, the associated parameter is
removed from refinement for the duration of the iteration. The parameter can be reinstated in
subsequent iterations if _rem evaluates to zero; for example, to reinstate the parameter after
convergence and into a new Cycle, the following could be used:

prm a 1 _rem = Mod(Cycle, 2);

15.7 ... Using ok_to_continue and _rem

In version 7, the ALVO4-GRS-AUTO.INP test example was the fastest way of solving the AlVO4
structure. In that example, the scattering power of the Al and V sites are allowed to refine
within the scattering power range of Al+3 and V+5. An alternative to refining on the Al+3 occu-
pancies, is to fix the occupancies for a certain number of Cycles and then change the occu-
pancies on the Al+3 site without actually including them in the refinement. This is accom-
plished using the new keywords of ok_to_continue, q, s and the new _rem parameter attribute;
it works as follows (see GRS-ALVO4\SOLVE-1.INP for details):

macro qal { 3 } ‘ Charge of Al+3
macro qv { 5 } ‘ Charge of V+5
macro exp { 9 } ‘ Repulsion exponent

macro ro_al { 1.65 } ‘ Ro values from bond distances
macro ro_v { 1.5 }
macro ro_oo { 2.4 }

‘ Change Ro values to s values
prm !so = Sqrt((4 ro_oo^(exp-1)) / exp); : 22.1184
prm !sal = ((ro_al^(exp-1)) 6 / exp) / so; : 1.65587133
prm !sv = ((ro_v^(exp-1)) 10 / exp) / so; : 1.28746033

macro S_ { If(Get(q) == qal, sal, sv) }
macro OCC { If(Get(q) == qal, 1, 1.85) }
macro VV { rand_xyz 1 } ‘ Randomize sites at start of cycle
macro VQ { _rem 1 val_on_continue = If(Mod(Cycle,10), If(Rand(0,1)<0.5,qal,qv), Val); }
prm q1 qal VQ
prm q2 qal VQ
prm q3 qal VQ
prm q4 qv VQ
prm q5 qv VQ
prm q6 = 3 qal + 3 qv - q1 - q2 - q3 - q4 - q5;

‘ Ensure scattering power equals 3*Al sites plus 3*V sites
ok_to_continue = Or(q6 == qal, q6 == qv);

Grs_(*, *, exp, 0) ‘ grs_interaction penalty

Energy Minimization 138

138 Energy Minimization

site Al x @ 0.0 y @ 0.9 z @ 0.8 occ Al+3 = OCC; q = q1; s = S_; VV
site Al x @ 0.1 y @ 0.0 z @ 0.9 occ Al+3 = OCC; q = q2; s = S_; VV
site Al x @ 0.2 y @ 0.1 z @ 0.0 occ Al+3 = OCC; q = q3; s = S_; VV
site Al x @ 0.3 y @ 0.2 z @ 0.1 occ Al+3 = OCC; q = q4; s = S_; VV
site Al x @ 0.4 y @ 0.3 z @ 0.2 occ Al+3 = OCC; q = q5; s = S_; VV
site Al x @ 0.5 y @ 0.4 z @ 0.3 occ Al+3 = OCC; q = q6; s = S_; VV

site O1 x @ 0.6 y @ 0.5 z @ 0.4 occ O-2 1 q -2 s = so; VV
site O2 x @ 0.7 y @ 0.6 z @ 0.5 occ O-2 1 q -2 s = so; VV
site O3 x @ 0.8 y @ 0.7 z @ 0.6 occ O-2 1 q -2 s = so; VV
site O4 x @ 0.9 y @ 0.8 z @ 0.7 occ O-2 1 q -2 s = so; VV
site O5 x @ 0.0 y @ 0.9 z @ 0.8 occ O-2 1 q -2 s = so; VV
site O6 x @ 0.1 y @ 0.0 z @ 0.9 occ O-2 1 q -2 s = so; VV
site O7 x @ 0.2 y @ 0.1 z @ 0.0 occ O-2 1 q -2 s = so; VV
site O8 x @ 0.3 y @ 0.2 z @ 0.1 occ O-2 1 q -2 s = so; VV
site O9 x @ 0.4 y @ 0.3 z @ 0.2 occ O-2 1 q -2 s = so; VV
site O10 x @ 0.5 y @ 0.4 z @ 0.3 occ O-2 1 q -2 s = so; VV
site O11 x @ 0.6 y @ 0.5 z @ 0.4 occ O-2 1 q -2 s = so; VV
site O12 x @ 0.7 y @ 0.6 z @ 0.5 occ O-2 1 q -2 s = so; VV

The above will change the scattering power on the Al* sites every 10th Cycle as defined in the
VQ macro. Note, there’s only one grs_interaction and the Grs_ macro looks like:

macro Grs_(s1, s2, & n, v)
{

grs_interaction s1 s2 #m_unique c =
If (R < rsm,

((-n rsm^(-2 - n)/2) R^2 + rsm^(-n) + n/(2 rsm^n)),
1 / R^n

);
penalty = c; : v

}

SOLVE-1.INP operates in three modes which can be chosen by the two control parameters (in
Red) in the INP text at the top of the file and is as follows:

continue_after_convergence
#prm penalties_only_start_at_Rietveld_positions = 1;
#if penalties_only_start_at_Rietveld_positions;
 only_penalties
 verbose 1
 temperature 0.5 use_best_values
#else

#prm solve_using_real_data_and_penalties = 1;
#prm solve_using_penalties_only = solve_using_real_data_and_penalties == 0;
verbose -1
num_runs 10 ' Solve structure 10 times, change to 1 to see solution

#if solve_using_real_data_and_penalties;

' Minimum energy at 5%
temperature = If(Mod(Cycle, 200), 0.7, 10);
iters = If(And(Cycle_Iter > 2, Get(r_wp) < 8), 0, 1000000000);

#endif
#if solve_using_penalties_only;

' Minimum energy at -423.5

Energy Minimization 139

139 Energy Minimization

only_penalties
temperature = If(Mod(Cycle, 200), Rand(0.35, 0.7), 10);
iters = If(And(Cycle_Iter > 2, Get(r_wp) < -423), 0, 1e9);

#endif
#endif

Running SOLVE-1.INP with penalties_only_start_at_Rietveld_positions=1 refines on the atomic
coordinated with only_penalties defined. It also displaces the atomic positions by an amount
of rand_xyz*temperature, or, 0.5 Å in a random direction at the start of each cycle. As can be
seen whilst running, the structure returns to the Rietveld refined values after each cycle.

Running SOLVE-1.INP with solve_using_real_data_and_penalties=1 solves the structure 10
times and the Rwp plot looks like:

This is similar to ALVO4-GRS-AUTO.INP which refines on occupancies. ok_to_continue is eval-
uated at the start of each iteration. If it evaluates to zero, then val_on_continue of its independ-
ent parameters are executed. The process is repeated until all ok_to_continue(s) evaluates to
non-zero. Note, more than one ok_to_continue can be defined.

15.8 ... Energy minimization-only resulting in the observed structure of
AlVO4

Running SOLVE-1.INP with solve_using_real_data_and_penalties=0, achieves a minimum en-
ergy configuration that matches the Rietveld refined structure. only_penalties are refined; lat-
tice parameters are not included. Even though AlVO4 is partly ionic, the maximum atomic dis-
placement at the energy minimum compared to the Rietveld refined positions is relatively
small at ~0.22 Å with an average movement of ~0.14 Å. In other words, the energy minimization
“pseudo-solved” the structure from a crude atomic interaction model.

Including lattice parameters as refinable parameters results in non-sensical atomic coordi-
nates which means that the atomic interaction model is inadequate in a physical sense.

15.9 ... Determining repulsion parameters for AlVO4

REP-1.INP performs three types of operations/refinements as seen by the self-explanatory con-
trol statements at the top of the file of:

Iteration

1,4001,2001,0008006004002000

R
w

p
 (

%
)

50

45

40

35

30

25

20

15

10

Solve-1.inp, data and penalties

Energy Minimization 140

140 Energy Minimization

#prm determine_repulsion_parameters = 0;
#prm test_rep_prms = 0;
#prm bond_length_differences = 0;

Setting determine_repulsion_parameters=1 fixes the atomic coordinates to Rietveld refined
values and then minimizes dUij/dfi=0 for AlVO4 by varying three s repulsion parameters of sal,
sv and so where:

Uij = qi qj / R + si sj / R9

As seen in REP-1.INP, the sum of the derivatives squared of dU/dfi (where fi is a fractional atomic
coordinate) do not refine to zero. This is seen in the lines:

Grs_(*, *, 9, 0.465098047`)
penalty = Get(grs_lp_rep); : 2.6397897`

Also, seen in REP-1.INP is that the Ro values (distance between two isolated atoms) seem too
large as in:

 prm !ro_alo = ((exp-1) Abs(sal so qal qo))^(1/(exp-1)); : 2.18729482
 prm !ro_vo = ((exp-1) Abs(sv so qv qo))^(1/(exp-1)); : 2.4673052
 prm !ro_oo = ((exp-1) Abs(so so qo qo))^(1/(exp-1)); : 2.73559269

Performing another refinement with the three determined repulsion parameters sal, sv and so
fixed, and instead refining on the atomic coordinates (test_rep_prms=1) results in a structure
with average atomic movements of 0.14 Å from the Rietveld coordinates. The movement can
be seen in the following Al octahedron (lighter atoms are the Rietveld determined positions):

Setting test_rep_prms=1 and output_U_vs_a=1 executes the INP code of:

#if And(output_U_vs_a, test_rep_prms);

Energy Minimization 141

141 Energy Minimization

 verbose 1
 num_runs 100
 iters 0
 a = Ramp_Run_Number(6.54131-3, 6.54131+3, Get(num_runs));
 out a.xy append
 Out(Get(a))
 Out_String(" ")
 Out(Get(non_fit, r_wp))
 Out_String("\n")
#else
 a 6.54131
#endif

This produces the XY file of:

Here we see that the observed a lattice parameter of 6.54131 Å is far from the minimum; this
was evident from the non-zero value for Get(grs_lp_rep) as seen above. Note the use of
Get(non_fit, r_wp) instead of Get(r_wp); the former gets the global Rwp and the latter the xdd
dependent Rwp. Use of only_penalties does not update xdd dependent Rwp(s); hence the
need to Get the global r_wp.

Lattice parameters were not refined in performing the test_rep_prms=1 operation; they could
have been with the inclusion of the line:

penalty = Get(grs_lp_refine); : 0

The refinement in such a case would have produced very incorrect results as indicated by the
U versus a plot above. This demonstrates that a simple Coulomb sum and 1/R^9 repulsion
term does not fully describe AlVO4 and that another model is needed.

15.10 . A non-ionic model for AlVO4

Instead of using the Coulomb sum, a 1/R^4 term was used for atoms of opposite charge (Al-O
and V-O) and a 1/R^9 for like charges, or,

Uij = Aij / R4 + Bij/R9

U versus a lattice parameter

a lattice parameter (Angstroms)

87654

U
 (

a
u

)

-250

-300

-350

-400

-450

Energy Minimization 142

142 Energy Minimization

This U choice was a guess and there may well be more physically meaningful models available.
The following however does highlight the ability to quickly model such cases. The REP-2.INP
test example uses this potential and it has three operational/refinement modes:

#prm repulsion_refine = 0; ‘ set to 0 or non-zero
#prm bond_length_differences = 0; ‘ set to 0 or non-zero
#prm test_repulsion_prms = repulsion_refine == 0;

Refining with repulsion_refine=1 results in a low value for grs_lp_rep and for grs_interactions:

penalty = Get(grs_lp_rep); : 0.000423118927`
Grs_(Al*, O*, ea, -a_alo, 0.000824217622`)
Grs_(V*, O*, ea, -a_vo, 0.00103650359`)
Grs_(O*, O*, ea, a_oo, 0.000721564661`)
Grs_(Al*, Al*, ea, a_alal, 0.000102652961`)
Grs_(Al*, V*, ea, a_alv, 0.000417591887`)
Grs_(V*, V*, ea, a_vv, 0.000314938926`)
Grs_(Al*, O*, er, b_alo, 0.000824217622)
Grs_(V*, O*, er, b_vo, 0.00103650359)
Grs_(O*, O*, er, b_oo, 0.000721564661)
Grs_(Al*, Al*, er, b_alal, 0.000102652961)
Grs_(Al*, V*, er, b_alv, 0.000417591887)
Grs_(V*, V*, er, b_vv, 0.000314938926)

These are low values compared to those obtained for REP-1.INP and it indicates near zero val-
ues for (dgrs_interaction/dfi)2 where fi is a fractional atomic coordinate or lattice parameter.
The difference in lattice parameters between the observed values from Rietveld refinement
and the energy minimization of REP-2.INP is:

Δa = 0.353377, Δb = 0.387755, Δc = 0.501125
Δal = -0.92222, Δbe = -0.32539, Δga = -0.77862

The maximum bond length difference is 0.18 Å with an average difference of 0.08 Å.

Molecular dynamics (MD) 143

143 Molecular dynamics (MD)

16. MOLECULAR DYNAMICS (MD)

molecular_dynamics
md_time_step !E (default = 0.002)
md_time !E
md_scale !E (default = 1)
Parameter attributes:

_md_k !E (default = 1)
_mass !E (default = 1)
_md_force !E (default = 0)

Examples

TEST_EXAMPLES\GRS-ALVO4\
MD-1.INP
MD-2.INP
MD-3.INP
MD-4.INP
GRS-0.INP

16.1 ... Molecular dynamics in a general manner

Defining molecular_dynamics (MD) places the program in a non-refinement mode where pa-
rameters of any type can be updated in a time dependent manner. The Verlet (1967) algorithm
is used for updating parameters. In the present implementation, parameters that are not typi-
cally associated with molecular dynamics can be updated in a MD manner. This is accom-
plished with the use of the parameter attributes of _md_k and _md_mass.

Molecular dynamics is basically the steepest decent method of refinement but with new pa-
rameters values accepted regardless of the change in the objective function (Rwp in the case
of TOPAS), or, relating this to the Newtonian equations of motion for iteration k and parameter
p, we have:

Force(k) = m a(k) = dRwp/dp

Velocity(k+1) = Velocity(k) + (dRwp(k)/dp) / m

In the Verlet algorithm, velocity is not considered explicitly and instead p is updated as follows:

p(k+1) = 2 p(k) – p(k-1) + a(k) t2

= 2 p(k) – p(k-1) + (1/m) (dRwp(k)/dp) t2

where t is the time step of the molecular dynamics. The mass m is set using _mass. To intro-
duce flexibility, the present implementation allows modifications of p(k+1) as follows:

p(k+1) = (p(k) – p(k-1) + (_md_k / _mass) (dRwp(k)/dp) t2) md_scale + p(k)

This equates to the Verlet algorithm with the default value of 1 for _md_k, _mass and
_md_scale. md_scale is a means of increasing or decreasing atomic movements (increasing
or decreasing temperature).

16.2 ... Molecular dynamics for atoms

In the absence of the _mass attribute, mass is determined from the masses found in the ISO-
TOPES.TXT file for site occupancies, as defined by the occ keyword, and weighted by the occ
values. In the absence of the _md_k attribute, md_k is determined for x, y and z coordinate
parameters as follows:

Molecular dynamics (MD) 144

144 Molecular dynamics (MD)

md_k for x = ax

md_k for y = by

md_k for z = cz

where ax = 1

bx = Cos(Get(ga) Deg)

by = Sin(Get(ga) Deg)

cx = Cos(Get(be) Deg)

cy = (Cos(Get(al) Deg) - cx bx) / by

cz = Sqrt(1.0 - cx^2 - cy^2)

The following two sites are therefore equivalent:

site Al
x @ # _mass = 26.981; _md_k = ax;
y @ # _mass = 26.981; _md_k = by;
z @ # _mass = 26.981; _md_k = cz;
occ Al+3 1

‘ and
site Al x @ # y @ # z @ # occ Al+3 1

The use of _md_k corrects the forces in case of non-orthogonal lattice parameters. grs_inter-
action can be used to calculate the forces for molecular dynamics; this is demonstrated in
MD-1.INP. The display of the Rwp plot in the Fit dialog can take a lot of processing for long MD
runs; not displaying the plot can speed up the simulation; and imilarly for the OpenGL 3D
graphics.

MD-1.INP operates in the P-1 space group; this can be changed to P1 by outputting the frac-
tional coordinates in P1 as follows:

p1_fractional_to_file aac.txt
in_str_format
 in_cart 0
 na 2 nb 2 nc 2

Here, a 2x2x2 unit cell is outputted in P1 to the AAC.TXT file. MD-2.INP describes such a unit
cell comprising 288 atoms. One of the AL1 atoms is offset, and running the MD simulation re-
sults in the atom returning to its lowest energy configuration position. This return to the opti-
mal position is due to the small offset of 2.92 Å. The following shows the starting configuration:

Molecular dynamics (MD) 145

145 Molecular dynamics (MD)

where the yellow atom is the Al1 atom’s offset, and the dark grey atom is the original position
of the Al1 atom. It is informative to watch the yellow atom migrate to the dark grey atom. The
INP text that produces the coloured Al1 sites is:

track_buffer 100
site qAl1 x 0.37342 y 0.34930 z 0.20369 occ Al+3 1 ' original posn
site Hi1 x @ 0.2 y @ 0.2 z @ 0.1 occ Al+3 1 track = Mod(Cycle_Iter, 20) == 0;

The colours for the Al1 and Hi1sites is seen in the ATOM_COLORS.DEF file; this file can be ed-
ited for the purpose of changing atom colours. The original atom qAl1 does not take part in the
only_penalties MD simulation as it is absent from the grs_interactions. The path of the Al1
atom looks like:

Molecular dynamics (MD) 146

146 Molecular dynamics (MD)

Note the last display has been disabled (item 84); it comprises all 288 atoms in the cell. In-
cluding line 84 produces:

Molecular dynamics (MD) 147

147 Molecular dynamics (MD)

MD-3.INP moves the Al1 atom 4 Å from the original position and in a random direction; the
pertinent INP text is:
temperature 1
md_scale = If(Cycle_Iter < 2, 0.1, 1);
site Hi1 x @ 0.37342 y @ 0.34930 z @ 0.20369 occ Al+3 1 rand_xyz 4

Clicking on the Break icon; ie.

executes rand_xyz. Often the energy of the system (which is kept constant) is too great and the
MD goes chaotic. This behaviour can be damped using md_scale as seen above. Also, repul-
sion terms such as 1/R9 can be very large when R is small; such small bond distances are un-
realistic and modifying Uij to avoid large values is beneficial. In the present work the equation
used for the grs_interaction, rewritten in terms of a yobs_eqn, is given in GRS-0.INP, or,

macro & n { 9 }
macro & q { -1 }
macro & ro { 2 } ‘ x-axis value at the minimum
macro & rsm { 1 }
yobs_eqn aac.xy =
 If (X < rsm,
 (Abs(q) / n) (ro^(n-1)) ((-n rsm^(-2 - n)/2) X^2 + rsm^(-n) + n/(2 rsm^n)),
 (Abs(q) / n) (ro^(n-1)) / X^n + q / X
);
 min 0.1 max 7 del 0.01

Note, the rsm value of 1. For R < rsm, U is modified such that large values are not encountered.
The following shows two views of the same yobs_eqn plot:

16.3 ... Applying a force on atoms

The _md_force attribute can be used to apply a force to atoms. The MD simulation in such a
case maintains energy conservation by adjusting the kinetic energy of the system. For the case
of AlVO4 and for the crude potential used; it is interesting that for a force along the a-axis on an
Al+3 atom, the structural integrity is maintained as seen below (see MD-4.INP):

U vs R

R (Angstroms)

54321

U
 (

a
u

)

150

100

50

0

U vs R

R (Angstroms)

65432

U
 (

a
u

)

-0.15

-0.2

-0.25

-0.3

-0.35

-0.4

Molecular dynamics (MD) 148

148 Molecular dynamics (MD)

The structure, however, loses its integrity for a similar force along the c-axis.

Amazon EC2 cloud computing 149

149 Amazon EC2 cloud computing

17. AMAZON EC2 CLOUD COMPUTING
TOPAS refinements can be run on the Amazon Web Services (AWS) cloud platform utilizing the
Amazon Elastic Compute Cloud (Amazon EC2) computing platform: “TC-Cloud”. TC-Cloud is
an optional, EXPERIMENTAL FEATURE within TOPAS and its use has following provisions:

• TC-Cloud is not part of the official TOPAS-Academic V8 feature set. TC-Cloud is provided
to get early feedback for possible future products. Its use is for internal testing purposes.

• TC-Cloud is provided AS IS without warranty of any kind and without obligation to provide
any support such as installation support, usage support, error corrections, and/or any en-
hancements to the feature.

• Using non-free AWS resources do incur AWS fees. The user is responsible for all AWS
costs. Coelho software is not liable for any loss arising out of the use of TC-Cloud; any
damages arising out of the use of TC-Cloud is borne by the User.

• The TC-Cloud feature can be cancelled at any time in future updates or upgrades, for any
reason, and without notice.

TC-Cloud can be run on 100s of virtual computers on the Amazon Web Services (AWS) cloud
platform. The process is driven from the GUI version of TOPAS/TOPAS-Academic, where
launching an INP file on the cloud is a few mouse-clicks away. The Cloud gives access to large
computing resources where 1000s of virtual machines (VMs) can be utilized in a relatively in-
expensive manner. Large simulated-annealing problems taking weeks on a laptop can be done
in minutes. The process typically involves working interactively with TOPAS in Launch mode
and performing initial preliminary refinements. Once the User is satisfied, the Cloud version of
the kernel, which we will call TC-Cloud, can be launched. Cloud operation is often performed
in an interactive manner due to the speed of analysis; many Cloud runs need only last for 10
to 20 minutes depending on the number of VMs used.

The User does not install TC-Cloud; instead, TC-Cloud is pre-installed on a Virtual Machine
image called an Amazon Machine Image (AMI). The AMI for TC-Cloud is called TC-AMI. TC-AMI
can be used to create many virtual machines each corresponding to a virtual Linux computer;
we will call these TC-VMs. Each TC-VM can run multiple instances of TC-Cloud. To summarize:

• TA.EXE is the GUI version of TOPAS running on a local computer.

• TC-Cloud is the cloud version of TOPAS running on a VM.

• TC-AMI is an image of a VM with TC-Cloud installed.

• TC-VM is a VM created from TC-AMI.

• Many TC-VMs (500 for example) can be created/deleted at once.

The user is given a choice of VM type when launching TC-AMI to create TC-VMs. A large TC-VM
can run more than one instance of TC-Cloud.

Amazon EC2 cloud computing 150

150 Amazon EC2 cloud computing

17.1 ... Operation

TC-Cloud operates in a similar but not identical manner to TC.EXE. Importantly INP files are
pre-processed before launching on the Cloud; this ensures the use of local files such as
TOPAS.INC and other #include files. Since the local TOPAS.INC is used then local emission pro-
files are used. Data files referenced in the INP file must reside in the same local directory as
the INP file. This is normal practise and INP files should therefore not contain file paths. For
example,

• this is valid on the Cloud: xdd data.xy

• this is not valid on the Cloud: xdd data\data.xy

File names on Linux are case sensitive. It is therefore important to use the correct case when
referring to file names within INP files. The following keywords can be included in INP files but
have been disabled:

append_bond_lengths
atom_out
A_matrix
A_matrix_normalized
bootstrap_errors
C_matrix
C_matrix_normalized
do_errors

do_errors_include_penalties
do_errors_include_restraints
index
num_runs
out
out_file
out_prm_vals_dependents_filter
out_prm_vals_filter
out_prm_vals_on_convergence
out_prm_vals_on_end

out_prm_vals_per_iteration
phase_out
phase_out_X
process_times
system_after_save_OUT
system_before_save_OUT
verbose
view_structure
xdd_out

Many of these refer to data output and as such are better left to the local computer.

17.2 ... Pre-requisites

Signing up with Amazon AWS is required, see https://aws.amazon.com/. Also, necessary is
TOPAS/TOPAS-Academic and a local computer to run TOPAS. TC-AMI comes with TOPAS/Ac-
ademic Version 7; access to TC-AMI can be obtained from Alan Coelho. TC-VMs are monitored
and terminated depending on User defined conditions. For example, VMs can be terminated
when the best goodness of fit parameter (GOF) from all TC-VMs drop below a User defined
value. This reduces running times for the TC-VMs and consequently running costs. The follow-
ing points are important:

• Signing up with AWS does not incur a fee.

• Using non-free AWS resources do incur AWS fees.

• The User is responsible for all AWS costs.

• AWS fees can be reduced by reducing the use of AWS services.

• VMs created as spot instances are often 60 to 70% cheaper.

• Services can be reduced by:

• Turning off unused VMs.

• Deleting unused VMs.

https://aws.amazon.com/

Amazon EC2 cloud computing 151

151 Amazon EC2 cloud computing

17.3 ... Pricing of AWS cloud resources

The following approximate pricing information are dependent on AWS and could change. Run-
ning TOPAS on AWS requires the use of VMs. Each VM in turn uses an EBS volume (a storage
device). Use of both the VM and the EBS incur AWS fees, see:

For VMs: https://aws.amazon.com/ec2/pricing/on-demand/

For EBS volumes: https://aws.amazon.com/ebs/pricing/

Limited usage of a single core VM on Amazon AWS are free of charge for a period of one year.
Large VMs (ones with many cores) are not free with charges dependent on time usage. Pricing
is on a per second basis for Linux VMs; the twin core VM c5.large is recommended for routine
TC-Cloud usage; for the same core count, it is equivalent to an average high end laptop in com-
putational speed and is priced at approximately ~0.034 cents USD (for spot instances) per
hour. One hundred of these running for one hour will cost approximately $3.40 USD. Large sav-
ing, often up to 70%, can be realized by requesting spot-instances, see https://aws.ama-
zon.com/ec2/spot/pricing/. The author has had no trouble getting regular access to 500 spot
instances.

Each TV-VM is a Linux VM; it comes with an 8 Gbyte EBS volume which stores TC-Cloud and
the operating system. EBS volumes are relatively inexpensive at 0.125 USD per Gbyte per
month, or $1 USD per month for each TC-VM. For one hundred VMs this small charge becomes
$100 USD per month. It is therefore recommended that VMs are deleted after use to reduce
costs. Creating and starting VMs takes one to two minutes.

Cloud storage is required in addition to VMs and associated EBS volumes. This storage is used
to transfer data from the local computer to the VMs and visa-versa. AWS S3 cloud storage is
used; it is inexpensive and runs at approximately $0.02 per Gbyte per month, see
https://aws.amazon.com/s3/pricing/. File manipulation of S3 storage is provided online via
the AWS Dashboard. Running TC-Cloud typically requires a fraction of a Gbyte in S3 storage
and hence common storage costs are negligible.

17.4 ... AWS dashboard and operating TC-Cloud

AWS includes a comprehensive browser dashboard called EC2 Dashboard https://ap-south-
east-2.console.aws.amazon.com/ec2/. In the case of running TC-Cloud, the dashboard is pri-
marily used to create TC-VMs from TC-AMI as well as deleting files created on the S3 cloud
storage. The rest of TC-Cloud operations are performed from TA.EXE. The important parts of
EC2 Dashboard are circled in the following:

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ebs/pricing/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/s3/pricing/
https://ap-southeast-2.console.aws.amazon.com/ec2/
https://ap-southeast-2.console.aws.amazon.com/ec2/

Amazon EC2 cloud computing 152

152 Amazon EC2 cloud computing

Note: AWS web screens may change due to improvements etc…; the general operation how-
ever should remain the same. Clicking on the Account (circled on the top) brings up account
options which includes real time billing information (AWS Cloud costs). Also on the top, is the
AWS region being operated-on. AWS operates on a regional basis; regions chosen should be
in close geographical proximity to the local computer. This reduces response times and data
transfer costs. TC-VMs are created by clicking on AMIs. Once created, details of TC-VMs for
the selected region can be viewed by clicking on Instances. AWS limits the number of VMs
available to 20 on most VM types; request for increasing this number can be made from the
circled ‘Limits’ item. The author had no trouble getting regular access to 500 spot instance
VMs.

17.5 ... Installing AWS CLI on the local computer

For communicating with the TC-VMs; the local computer requires the installation of the AWS
Command Line Interface (CLI). The CLI can be trivially installed and downloaded from:

https://docs.aws.amazon.com/cli/latest/userguide/install-windows.html.

17.6 ... Operating TC-Cloud from TOPAS (GUI)

After the preliminary setting up and testing of an INP file with TA.EXE on the local computer,
the INP file can be fed to AWS for parallel operation on many VMs. Summing up the process
we have:

1) Set up INP file and ensure it runs as expected on TA.EXE on the local computer.

2) Create a small number of VMs (3 for example) and ensure that the INP file runs as expected
on the VMs.

3) Create many more VMs (User determined) and run the INP file on the VMs.

Stage-1 is normal TOPAS operation. Stage-2 involves creating a job (*.CLD files) from the
‘Setup Cloud’ tab in the GUI. Before creating a job its best to create a template that can be
used for all jobs in the AWS region. Enter your ‘Key pair file’, the AWS Region being used and
your S3 bucket name details in the Setup Cloud tab; it should look something like:

https://docs.aws.amazon.com/cli/latest/userguide/install-windows.html

Amazon EC2 cloud computing 153

153 Amazon EC2 cloud computing

Save the details using ‘Save-As CLD setup file’ to a file. Load this file when creating other CLD
files. To run a job then enter the rest of the setup details; an example is:

The highlighted lines require input of the INP file to be run on the Cloud as well as the necessary
data files. In the above the INP file is placed in the S3 job directory called 2wfi-1 and the data
file is placed in the S3 directory called 2wfi. S3 will therefore contain the following two direc-
tories:

s3://aacbucket1/swfi-1

s3://aacbucket1/swfi

The INP file as well as other communication files are copied to the job directory, 2wfi-1 in this
case. The name of the INP file on S3 is changed to IN.INP; IN.INP is used in the retrieval of

Amazon EC2 cloud computing 154

154 Amazon EC2 cloud computing

output from the VMs; it is unchanged during Cloud operation, and it can be also viewed as a
backup for the job. Each run on the Cloud requires a unique job name; an exception is thrown
otherwise. Many jobs, however, can use the same S3 data directory. In cases where many jobs
are run sequentially, each using the same data files, then the ‘Copy data to S3’ option can be
set to No after the first job; this speeds-up processing as copying large data files over the in-
ternet can be slow. CLD files contain information necessary for launching the INP file on the
cloud. Once the information is entered, it becomes possible to view the created VMs in the
‘Virtual Machines’ tab, or:

Data can be displayed in sorted order by double clicking on the column headings. To launch
the INP file on a VM then select the VM and click ‘Run TC on selected VMs’. To select all VMs
then click on the empty circled rectangle shown. Only VMs with an ok Status can be launched.
If a selected VM is ‘starting’ or ‘pending’ then Status will not be ok. The number of TCs running
on each VM (typically one) is shown in the # TCs column. This data as well as other VM details
maybe out-of-date; to show the latest then click on the Refresh option. The iters column shows
the total number of refinement iterations executed on the respective VM; this number supplies
a means of determining if a VM is running in an expected manner. For example, if iters has
stopped increasing in an expected manner and #TCs is not zero then the running TCs have
stopped operating in an expected manner.

Due to the speed of analysis, Cloud operation is often performed interactively. Running many
jobs to investigate a problem, each taking 10 to 20 minutes and comprising 500 VMs, is com-
mon. Each job creates a directory on S3 which can be deleted after use using the AWS S3 dash-
board; it looks like:

Amazon EC2 cloud computing 155

155 Amazon EC2 cloud computing

17.7 ... Terminating/Stopping TC-VMs and tc-mon.a

Terminating or stopping TC-VMs reduces AWS fees. TC-VMs can be automatically stopped or
terminated depending on ’End conditions’, or:

These conditions are uploaded to the VMs when a job is launched. On launching a job, a small
monitoring program, called tc-mon.a, is started on each VM. This monitoring program reads
the End conditions and monitors the running TCs. VMs are in turn terminated/stopped depend-
ing on the End conditions. From the local machine, the end conditions can also be uploaded
after a job has started using the ‘Upload to selected VMs’ option. This option has no effect on
VMs with a Status that is not ok. The ‘Refresh’ option displays values as found on common
storage for the job indicated in ‘Setup cloud’ tab.

TCs running on VMs are terminated when the number or iters, as defined in the INP file, has
been reached, or, when the CPU time allocated ‘Max time (s)‘ has been reached or when the
overall best GOF falls below ’GOF Target’. When there are no TCs running on a VM then the VM
is stopped if ‘Off on End’=1; subsequently if ‘Del on end’=1 then the VM itself is terminated
(deleted). Parameters for a typical job left unattended would be:

Max time (s) = 10 60 60 = 10 hrs of running

GOF Target = 10, Off_on_End = 1, Del_on_end = 1

For interactive use, the user can manually terminate TCs and VMs; the termination parameters
could therefore look something like:

Amazon EC2 cloud computing 156

156 Amazon EC2 cloud computing

Max time (s) = 0

GOF_Target = 10, Off_on_End = 0, Del_on_end = 0

A ‘Max time (s)’ of zero (the default) disables the ending of TCs on a time basis. ‘Max time (s)’
on VMs can be entered as an equation by starting the equation with an equal sign. For example,
‘= 24 60 60’ could be used to enter 24hrs.

17.8 ... Powering off TC-VMs after 100 minutes of inactivity

In addition to the terminating/stopping criteria of section 17.7, VMs are automatically powered
off (stopped but not terminated) after 100 minutes of TC-Cloud inactivity including inactivity
on VM start-up. The net effect is that VMs are stopped after 100 minutes of TC-cloud not being
run. Situations where 100 minutes of inactivity is possible include internet-down situations as
well as Users forgetting to power-off or terminate VMs. For example, the fee incurred for for-
getting to turn off 100 spot instance VMs would be ~3.40 USD.

17.9 ... Retrieving the INP or FC file that gave the best GOF

Output from a job, corresponding to the best INP for Rietveld refinement, or the best structure
factors for charge-flipping, is stored on the S3 job directory. This storage to S3 from a job is
independent of the local computer. The ‘Get best overall’ downloads the output from S3 to the
local directory where INP file originated. The name given to the output is Job-Name.INP for
Rietveld refinement or Job-Name.FC for charge-flipping. For example, for a job named ‘PbSO4-
1’ and an input file with a path of C:\DATA\PBSO4.INP we get:

‘INP File for cloud’ = C:\DATA\PBSO4.INP

 ‘Get best overall’ places output in C:\DATA\PBSO4 -1.INP

Once retrieved, the best INP file can be run on the local computer; in other words, the best fit
from the Cloud can be visually inspected with a few mouse clicks. If the VMs are available and
not stopped or terminated, then output from the individual VMs can be retrieved using the ‘Get
best for selected’ option; output is placed in the local computer in an identical to that de-
scribed for ‘Get best overall’. Typical interactive operation therefore comprise viewing and par-
tially running intermediate Cloud results and making decisions based on those results.

17.10 . Monitoring, TC-Cloud is independent of the local computer

The running of VMs can be monitored by the local computer using the ‘Monitoring is On/Off’
option. When On, the best overall GOF is displayed in the text output of the ‘Fit Dialog’ window
at time intervals as defined in ‘Monitoring time interval’ option of ‘Setup cloud’ tab. Whilst jobs
are running, the local computer can be used to run refinements independent of Cloud jobs.
Cloud jobs can be started on a laptop, left running overnight and results viewed the next day.

17.11 . Random number generator automatically seeded

The random number generator for both TC-Cloud (and TC.EXE on the local computer) is
seeded such that the sequence of random numbers generated for any run is unique. Identical

Amazon EC2 cloud computing 157

157 Amazon EC2 cloud computing

sequences can be generated by using the seed keyword with an integer (corresponding to a
seed number) placed after it.

17.12 . CLOUD__ #define and Get(cloud_run_number)

The pre-processor directive of ‘#define CLOUD__’ is automatically included at the start of INP
files running on VMs. This allows blocks of INP script to be conditionally included/excluded
from Cloud runs making it easy to run the same INP file in both the Cloud and on the local
computer. For example, the following is useful in the case of charge-flipping:

charge_flipping
#ifdef CLOUD__

randomize_initial_phases_by = Rand(-180, 180);
#else

set_initial_phases_to job-name.fc
#endif

Here the state of the best FC file found on the VMs can be determined by first executing the
‘Get best overall’ option and then locally running the INP file. Also, available is
Get(cloud_run_number) which returns the run number assigned to the corresponding VM with
counting starting at 0. Get(cloud_run_number) returns -1 when running on the local computer.
Example usage in terms of stacking faults could be:

macro & pa { Get(cloud_run_number+1)/102 }
generate_stack_sequences {

number_of_sequences 200
number_of_stacks_per_sequence 200
Transition(1, lpc)

to 1 = pa; a_add = 2/3; b_add = 1/3;
to 2 = 1-pa; a_add = 0; b_add = 0;

Transition(2, lpc)
to 1 = 1-pa; a_add = 0; b_add = 0;
to 2 = pa; a_add = -2/3; b_add = -1/3;

}

17.13 . ‘Setup Cloud’ details

Cloud setup file

File name containing cloud details for a job.

Key pair file

File name containing encrypted login information, see:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

This file needs to be read/write protected so that only one user can access; use Windows
Explorer and Right-Click on the file to change its properties.

Region

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Amazon EC2 cloud computing 158

158 Amazon EC2 cloud computing

Geographical region where VMs reside.

S3 Bucket

The name of the bucket for transferring data to and from the TC-VMs. Buckets are created
and manipulated at https://s3.console.aws.amazon.com/s3/. By default, S3 buckets are
private to the User. Once a bucket is created, directories within the bucket corresponding
to the job name are automatically created on launching the TC-VMs. For example, for a job
named job-1 and a bucket called my-bucket then the following directory on S3 is created:

s3://my-bucket/job-1

my-bucket are used for many jobs. Information stored on common storage are not deleted
by TA.EXE running on the local computer; the User is therefore responsible for cleaning up
unwanted files using the AWS S3 dash-board.

Job Name

Name of job. Job names cannot contain spaces.

S3 data directory

Directory where data files are stored. More than one job can use an S3 data directory.

INP file for cloud

Input file to run on the Cloud. The INP file can make use of the predefined pre-processor
directive called CLOUD__. It can also make use of Get(cloud_run_number).

Number TCs per VM

Typically set to 1. The number of TC-Cloud instances to run on each TC-VM. The number of
TCs per VM should not exceed the number of Cores as seen in the Cores column of the
Virtual Machines tab. For example, the VM type of c5.18xlarge has 36 Cores each with 2
threads (intel hyper threading). The number of TCs therefore should not exceed 36. Infor-
mation on EC2 instance types can be found at https://docs.aws.ama-
zon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html.

Max threads per TC

Typically set to 2 for c5.large VMs. The maximum number threads each TC can use. If zero,
then each VM will be allowed to use the maximum number or threads. For VMs with more
than one TC running then the maximum number threads should be set to:

Max_threads_per_TC = (Virtual Cores) / Number_TCs_per_VM

Monitoring time interval (s)

The time interval used when ‘Monitoring is On’.

https://s3.console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html

Amazon EC2 cloud computing 159

159 Amazon EC2 cloud computing

17.14 . ‘Virtual Machines’ tab options

Refresh

Refreshes VMs details corresponding to the region defined in the ‘Setup cloud’ tab.

Run TC on selected VMs

Launches TC-Cloud on selected VMs.

Get best overall

Gets and processes the best output from common storage for the job defined in Setup
cloud and places the result in the directory where the original INP file came from. For
Rietveld refinement the retrieved output is placed in a file called job-name.INP. For charge-
clipping, the retrieved output (structure factors) is placed in a file called job-name.FC. Files
placed in common storage persists and are therefore available even after the job’s VMs are
deleted.

Get best for selected

Gets and processes the best output from a selected VM and places the result in the direc-
tory of the original INP file. The selected VM must be On. For Rietveld refinement the re-
trieved output is placed in a file called job-name.INP. For charge-clipping, the retrieved
output (structure factors) is placed in a file called job-name.FC.

End TC on selected VMs

Stops any TC-Clouds running on selected VMs. On termination of the TCs, the VMs are
turned off if their corresponding Off_on_End=1; in turn VMs are terminated if their corre-
sponding Del_on_End=1.

Monitoring is On/Off

Starts/Stops monitoring. When monitoring is On, the best GOF as found by the TC-VMs for
the job defined in ‘Setup cloud’ is displayed in the Fit Dialog.

Turn On selected VMs

Turns selected VMs On.

Turn Off selected VMs

Turns selected VMs Off.

Console for selected VMs

Log-in to the selected VMs creating terminal windows for each. Can be useful for trouble
shooting.

Amazon EC2 cloud computing 160

160 Amazon EC2 cloud computing

17.15 . Creating TC-VMs – Spot Instances

TC-VMs are created from the EC2 dashboard. To create 200 VMs, for example, click on the
AMIs option and then click on the TC-AMI-n AMI. n corresponds to the latest TC-AMI version.
Then click on Launch to bring up ‘Choose an Instance Type’ screen. Choose an appropriate
VM type; for refinements that require less than 4Gbytes of memory then choose c5.large. The
amount of memory required for each TC can be determined by first running the INP file on the
local machine and viewing the Windows Task Manager. Once the VM type is chosen, proceed
to the next screen ‘Configure Instance Details’:

Set ‘Number of instances’ to 200 and set the ‘IAM role’ to ‘ecsInstanceRole’. Select ‘Request
Spot instances’. Spot instances are often 60 to 70% cheaper; the user is informed when spot
instances are unavailable; the author has had no difficulty obtaining 500 spot instances on a
regular basis. Proceed to the ‘Configure Security Group’ screen’ and set the Source to ‘My IP’;
ie.

Amazon EC2 cloud computing 161

161 Amazon EC2 cloud computing

Click on ‘Review and Launch’ to Launch the creation of the TC-VMs. Creation should take one
to two minutes. Use the TA Refresh option of ‘Virtual Machines’ to see the status of VMs; VMs
with a Status of ok are ready to run. Once all the VMs are created, the ‘Run TCs on selected
VMs’ option from the Virtual Machines tab can be used to launch the job on the selected VMs.

17.16 . Choosing the optimum VM type

The most appropriate VM for TOPAS type problems are c5.large where memory usage is less
than 4 Gbytes. However, a problem that uses 20 Gbytes of memory would need a larger VM;
such problems could be a large charge flipping refinement, a large Rietveld refinement or a
simulated annealing refinement with 1000s of parameters. Memory usage prior to launching
on the Cloud can be determined using the local computer. The VM type chosen should there-
fore be one than has more memory than the maximum memory usage seen on the local com-
puter. Only c* types (compute types) VMs should be chosen (see https://aws.ama-
zon.com/ec2/pricing/on-demand/). For a problem that uses 20 Gbytes of memory, the
c5.4xlarge is the smallest VM that will do the job. Max Number of threads should be set to zero
allowing the maximum number of threads to be used which in this case is probably 16.

Note, TOPAS is threaded to a large extent, however, an excessive number of threads could
slow down execution. For example, the large VM type of c5.18xlarge operating on the TEST_EX-
AMPLES\SINGLE-CRYSTAL\PN_O2_2-ADPS.INP (3970 parameters) produces the following as a
function of number of threads:

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

Amazon EC2 cloud computing 162

162 Amazon EC2 cloud computing

of
Threads

approximate_A - 15 iterations Full A matrix - one iteration
Time(s) Gain Time(s) Gain

2 42.19 0.32
4 22.28 0.60 186.98 0.36

8 8.41 1.59 61.93 1.09

16 4.11 3.25 31.65 2.12

32 2.77 4.82 17.92 3.75

48 2.89 4.62 15.18 4.43

64 2.95 4.53 13.71 4.91

70 3.06 4.37 13.73 4.90

The columns marked Gain are the times taken on a high-end laptop with 8 threads divided by
the time taken on c5.18xlarge. The speedup due to number-of-threads is substantial up to
about 32 threads. It is worth noting that TOPAS V7 for the approximate_A case is 1.9 times
faster than V6.

17.17 . Unable to connect to TC-VMs after local computer restart

The IP address of the local computer may change when the local computer is powered off and
restarted, or, when the connection to the internet changes. VMs created prior to the restart
would therefore have an invalid local-computer-IP-address; communication with the VMs
would therefore not be possible. This scenario is noticed when the Refresh or ‘Run TCs on se-
lected VMs’ options of the ‘Virtual Machines’ tab is not responsive. In such a case it is neces-
sary to instruct the VMs that the IP address has changed. This can be performed from the In-
stances of the EC2 Dashboard; from this screen click on the security group shown in the ‘Se-
curity Groups’ column. This brings up details of the security group. Click on Inbound and then
Edit and then change the Source to My IP, or,

Protein Refinement 163

163 Protein Refinement

18. PROTEIN REFINEMENT

18.1 ... Reading Protein Data Bank (PDB) CIF files

[pdb_cif_to_str_file $file] ...
[pdb_ignode_adps !E0]
[pdb_cif_sites $sites]
[pdb_cif_to_str #0]

Examples

CF-PROTEIN\2PVB-P212121\GEN.INP
CF-PROTEIN\2PVB-P212121\MATCH.INP
CF-PROTEIN\6Y84-C121\REFINE-
MENT.INP

Protein Data Bank (PDB) PDBx/mmCIF fles from https://www.rcsb.org/ can be downloaded
and converted to INP text using pdb_cif_to_str_file. The operation is performed when
pdb_cif_to_str is 1; on termination of refinement pdb_cif_to_str is set to 0 in the OUT file. The
INP text generated is placed in the INP file after the pdb_cif_to_str keyword, or:

pdb_cif_to_str_file cif.cif
pdb_ignode_adps 1
pdb_cif_to_str 0

xdd_scr sf.cif
lam lo 0.9096
str

scale @ 1
a 51.03
b 49.81
c 34.57
space_group P212121
site ACE_C_0_1_HETATM x 0.07354 y 0.35529 z 0.47637 occ C 1.00 beq 6.24
site ACE_O_0_2_HETATM x 0.06210 y 0.34246 z 0.50194 occ O 1.00 beq 7.96
site ACE_CH3_0_3_HETATM x 0.06198 y 0.35666 z 0.43651 occ C 1.00 beq 8.20
site SER_N_1_4_ATOM x 0.09557 y 0.36858 z 0.48319 occ N 1.00 beq 6.66
site SER_CA_1_5_ATOM x 0.10676 y 0.36880 z 0.52155 occ C 0.46 beq 8.09
...
rigid

point_for_site SER_N_1_4_ATOM ux -1.40900 uy 0.28011 uz -1.21189
point_for_site SER_CA_1_5_ATOM ux -0.83800 uy 0.29111 uz 0.11411
point_for_site SER_CA_1_6_ATOM ux -0.70700 uy 0.20011 uz 0.04411
...
Rotate_about_axies(@ 0 RX_, @ 0 RY_, @ 0 RZ_)
translate tx @ 6.28600 ty @ 18.07889 tz @ 17.91589

A rigid body is generated for each residue with coordinates set relative to its geometric center.
Refinement can proceed on the generated INP text by setting the file name of xdd_scr to the
name of the structure factor file 2PVB-SF.CIF, also downloaded from https://www.rcsb.org/.
Running 2PVB\GEN.INP produces GEN.OUT; setting GEN.INP to GEN.OUT and running produces
a fit.

pdb_cif_sites considers sites with names matching the site identifying string $sites. This can
be used, for example, to extract all residues of the same type. The translate keywords of the
rigid bodies can then be set to zero and the individual sites of the residues penalized such that
sites of the same name are brought together; example INP text to do this is as follows:

 macro Match(s)

https://www.rcsb.org/
https://www.rcsb.org/

Protein Refinement 164

164 Protein Refinement

 {
 atomic_interaction s = R^2;
 ai_sites_1 s*
 ai_sites_2 s*
 ai_closest_N 1
 ai_only_eq_0
 penalty = s;
 }
 Match(LYS_N_)
 Match(LYS_CA_)
 Match(LYS_C_)
 Match(LYS_O_)
 Match(LYS_CB_)
 Match(LYS_CG_)

…

Running example 2PVB\MATCH.INP produces the following showing overlay of LYS residues:

18.2 ... Protein Refinement, 6y84, SARS-CoV-2 main protease

The structure factors and PDBx/mmCIF files for 6y84 can be downloaded from the PDB. To
generate an initial INP file then create an INP file with the following (see 6Y84-C121\REFINE-
MENT.INP):

pdb_cif_to_str_file cif.cif
 pdb_ignode_adps 1
 pdb_cif_to_str 0

After refinement, the INP file can be updated with the structure generated from the CIF file.
Refining on the updated INP file gives:

Protein Refinement 165

165 Protein Refinement

The refinement comprise 50348 unique reflections and 1826 parameters and the time to con-
vergences is 33s on a laptop with all graphics operational. Restrains/constrains can of course
be added.

Solving proteins at atomic resolution 166

166 Solving proteins at atomic resolution

19. SOLVING PROTEINS AT ATOMIC RESOLUTION

Include_Charge_Flipping
charge_flipping

[cf_plot_histo !E]
[cf_plot_fit !E]
[add_to_phases_of_non_weak_reflections !E]
...
[scale_flipped !E]
[cf_percent_ED_ge_H #]
[pick_atoms $atom]…

[choose_from !E]
[choose_to !E]
[choose_randomly !E]
[with_symmetry !E]
[omit !E]
[insert !E]
[pick_fwhm !E1]
[omit_fwhm !E1]
[insert_fwhm !E1]

[insert_atoms {
[activate !E1]
[in_cartesian]
[insert_atom] …

[x !E] [y !E] [z !E] [occ !E]
}]…
[cf_set_phases !E {

#h #k #l #Re #im
}]
[prm N # val_on_continue !E] …

Macros in CHARGE_FLIPPING.INC

Examples

CF-PROTEIN\
1A7Y-P1\SOLVE.INP
2ERL-C2\SOLVE.INP
1BYZ-P1\SOLVE.INP
2KNT-P21\SOLVE.INP
1AHO-P212121\SOLVE.INP
4LZT-P1\SOLVE.INP
1MC2-C121\SOLVE.INP
1DY5-P21\SOLVE.INP
2WFI-P212121\SOLVE.INP

1HHZ-P3221\SOLVE.INP
1C75-P212121\SOLVE.INP
1B0Y-P212121\SOLVE.INP
1CTJ-R3R\SOLVE.INP
2PVB-P212121\SOLVEINP
1CKU-P212121\SOLVE.INP
1SWZ-P3221\SOLVE.INP
5DA6-R32\SOLVE.INP

1CTJ-R3R\1-ATOM.INP
2PVB-P212121\1-ATOM.INP
1C75-P212121\1-ATOM.INP
5DA6-R32\1-ATOM.INP
1CKU-P212121\1-ATOM.INP
2WFI-P212121\1-ATOM.INP

4LZT-P1\2-ATOMS.INP

The largest proteins ever solved ab initio at atomic resolution can be solved using modified
charging flipping strategies, see Coelho (2021) for details. Difficult or large structures can be
solved in minutes, rather than days using Amazon AWS Cloud computing. New/modified
charge_flipping keywords are shown above. A single strategy does not solve all structures; A
strategy successful on one structure is not necessarily successful on another. However, it will
be shown that only two strategies can solve a large range of the most difficult structures. New
keywords allow for a variety of strategies. scale_flipped scales flipped electron density (ED)
charge; it is applied each charge-flipping iteration. insert_atom inserts atoms in the ED when
activate is non-zero. val_on_continue for prm(s) are evaluated at the end of each charge-flip-
ping iteration. cf_percent_ED_ge_H returns the percentage of ED pixels greater than 1 where
the maximum of the ED is set to number of electrons in the heaviest atom defined by
f_atom_type. Values less than 1 often signal a Uranium atom situation where a single ED peak
dominates. cf_percent_ED_ge_H is displayed during charge flipping in the Fit Dialog.
cf_plot_histo plots a frequency distribution of the electron density pixel intensity.

Solving proteins at atomic resolution 167

167 Solving proteins at atomic resolution

When cf_set_phases is non-zero, the phases for the family of reflections (#h, #k, #l) are set to
the phase corresponding to #Re and #Im. cf_set_phases is useful when phases are known or
for setting origin defining phases; for triclinic structures, three origin defining phases are pos-
sible. Additionally, intensities of the reflections are scaled by the value evaluated by
cf_set_phases.

Table 19-1 show difficult benchmark structures, as listed by Elser et al. (2017) and Burla et al.
(2011), that have been solved ab initio; see corresponding SOLVE.INP files for details. It is best
to do preliminary investigations on the local computer (non-Cloud) to determine which strat-
egy might work best. Once a strategy is chosen, INP files can be fed to the Cloud for rapid
structure solution. Up to 500 spot instance Virtual Machines (VMs) are easily obtained on the
Amazon AWS system in Australia at a cost of ~0.035 USD cents per VM per hour, or, 3.40 USD
per hour for 100 machines. These prices are Amazon AWS dependent. Prices are shown prior
to the creation of the VMs. The times shown in Table 19-1 can be easily doubled when one
considers the preliminary analysis taken to arrive at the appropriate strategy. Typically, strat-
egies are tried on the local computer before migrating the problem to the Cloud. Also, the
structure solution process is normally halted after the first solution is found; for the investiga-
tive purposes, however, the structures in Table 19-1 were each solved at least 5 times. The
two strategies mentioned in Table 19-1 are:

‘ S0 strategy
 fraction_reflections_weak 0.5 add_to_phases_of_weak_reflections 90
 fraction_density_to_flip 0.9 scale_flipped 0.6

S0 seems to work well for large structures with a relatively heavy atom. Non-triclinic structures
with symmetry seems to succumb to the S1 strategy, or:

‘ S1 strategy
fraction_reflections_weak 0.5 add_to_phases_of_weak_reflections = Rand(-180, 180);

 fraction_density_to_flip 0.97 scale_flipped 0.2
 pick_atoms *
 pick_fwhm 3
 choose_randomly = If(Mod(Cycle_Iter, 50), 0, 10);

with_symmetry 1
 insert 10 ‘ Increase if the most dominant atom does not change

symmetry_obey_0_to_1 0.25 find_origin 0
flip_regime_2 = Sine_Wave(10/4,-2,2,10); ‘ Used when there’s not enough perturbation

S1T extends the S1 strategy with the addition of the tangent formula, or the inclusion of:

Tangent(0.5, 30)

Table 19-1. Ab initio structure solution strategies. Time indicates time to solution on aver-
age. Each structure was solved at least 5 times. Num_VMs greater than 8 refers to the num-
ber of VMs used on the Cloud; Num_VMs=9 corresponds to an 8 core local computer (a lap-
top). Cost corresponds to the average Cloud cost to a solution using the strategy indicated.

Solved

PDB
code

Space
group

N/Z

dmin

(Å)
Time
(min)

Num
VMs

Cost
USD

Strategy

Np

yes 1a7y P1 270 0.94 0.1 8 - S0 -

Solving proteins at atomic resolution 168

168 Solving proteins at atomic resolution

yes 2erl C2 303 1.00 1 200 0.10 S1 8

yes 1byz P1 408 0.90 1 200 0.10 S0 -

yes 2knt P21 460 1.20 16 200 2.00 S1T 7

yes 1aho P212121 500 0.96 1 200 0.10 S1 8

No 1w7q P65 828 1.10 >240 200 >28 S0,S1 4

yes 4lzt P1 1183 0.95 2 8 - S1 10

yes 1mc2 C2 1254 0.80 2 200 0.20 S1 10

yes 1dy5 P21 1894 0.87 1 500 1.40 S1 30

yes 2wfi P212121 1920 0.75 18 500 5.10 S1 15

yes 1hhz P3221 354 0.99 7 200 1.00 S1 6

yes 1c75 P212121 1184 0.92 1 8 - S0 -

yes 1b0y P212121 837 0.93 1 8 - S0 -

yes 1ctj R3:R 918 1.10 1 200 0.10 S1 4

yes 2pvb P212121 1096 0.91 3 200 0.35 S1 5

yes 1cku P212121 1599 1.20 1 200 0.15 S1 8

yes 1swz P3221 1254 1.06 50 200 5.80 S1 15

yes 5da6 R32 1390 1.05 5 500 1.40 S1 15

PDB code Reference

1a7y, 2erl, 1byz, 2knt, 1aho, 1w7q, 4lzt, 1mc2, 1dy5, 2wfi Elser & Lan (2017)

1hhz, 1c75, 1b0y, 1ctj, 2pvb, 1cku, 1swz Burla et al. (2011)

5da6 Mooers (2016)

PDB codes 1b0y, 1ctj, 1c75 and 1cku are easily solved (a few minutes) on a laptop using the
S0 strategy. 2knt uses the tangent formula due to its relatively low-resolution data (1.2Å) as
well as its relatively small number of non-hydrogen atoms in the asymmetric unit. 1w7q is a
light element structure that was not solved ab initio after more than four hours. flip_regime_2
of S1 introduces perturbation and it should be used for cases where there the ED seems quiet
during the charge flipping process; decreasing the absolute value of flip_regime_2 reduces
perturbation. In the case of 1cm2, flip_regime_2 was set to oscillate between -1 and 1. Larger
values clearly shows too much perturbation in the ED.

Graphically inspecting the ED or looking at the (%ED > H) output on the local can be used to
determine if there’s too little or too much perturbation, during charge flipping. (%ED > H)
should typically range from 1 to 5. For example, setting fraction_reflections_weak to 0.9 re-
sults in too much perturbation. Or, using the Tangent formula macro on P1 structures, without
the mitigation strategy of Fix_Uranium_3, results in too little perturbation resulting in uranium
atom solutions. The value set for Fix_Uranium_3 should be just high enough to prevent Ura-
nium atom solutions; a value of 1 seem to work in most cases. The number used for insert of
pick_atoms should be just high enough to change the position of the highest intensity ED peak
every 40 to 50 iterations as defined by choose_randomly; note pick_atoms is executed when

Solving proteins at atomic resolution 169

169 Solving proteins at atomic resolution

choose_randomly is greater than zero. add_to_phases_of_weak_reflections=90 results in a
shifting origin and it should not be used with symmetry_obey_0_to_1; the latter prevents origin
shifting. add_to_phases_of_weak_reflections should be set to Rand(-180,180) instead of 90
when using symmetry_obey_0_to_1. Further structure solution tips are:

• Try the simple S0 strategy first for number of atoms less than about 300.

• If a heavy atom is present, then try S0.

• Inspect the ED graphically; if it does not show distinct atoms after a few iterations then
change strategy.

• Use S1 for large difficult structures.

• Try the tangent formula when the number of non-hydrogen atoms in the asymmetric is less
than ~500 atoms. The tangent formula reduces perturbation allowing lower resolution
structure to be solved.

The range of convergence of structure factor phases can be investigated by loading optimum
structure factor phases values, using set_initial_phases_to, and then adding to the optimal
phases using randomize_initial_phases_by. High resolution data can have their optimal
phases changed by an amount of 0.96*Rand(-180,180) whilst still being able to solve the
structure within a few dozen charge flipping iterations. Most of the SOLVE.INP examples con-
tain the following for investigating this range of convergence:

 #if (0)
 set_initial_phases_to optimal.fc
 randomize_initial_phases_by = Rand(-180, 180) 0.9;
 #endif

19.1 ... Ab initio solution of triclinic 4lzt

PDB code 4lzt comprises 1183 non-hydrogen atoms in the unit cell and is considered difficult
to solve, see Elser et al., 2017. 4lzt contains 10 Sulphur atoms and these are considered mod-
erately heavy. If we were to insert ED peaks at positions corresponding to the highest two
peaks of the optimum electron density, then charge flipping finds a solution and within a few
iterations; 4LST\2-ATOMS.INP demonstrates this where an ED starting with the two highest op-
timal peaks, inserted using insert_atoms, produces and R-factor plot of:

 Iteration

302520151050

R
-f

a
ct

o
r

1

0.9

0.8

0.7

0.6

0.5

Launch Mode: C:\c\t5\cf-protein\4lzt-P1\2-atoms.inp

Solving proteins at atomic resolution 170

170 Solving proteins at atomic resolution

In fact, any two of the five highest peaks produce similar R-factor plots. However, these opti-
mal ED peak positions are unknown. The strategy that works therefore involves picking an
atom randomly out of the 10 largest peaks in the electron density and setting the picked atom
to a large density. The INP file looks like:

 fraction_reflections_weak 0.5
 add_to_phases_of_weak_reflections = Rand(-180, 180);
 fraction_density_to_flip 0.97
 scale_flipped 0.2
 pick_atoms *
 pick_fwhm 5 omit_fwhm 1 insert_fwhm 1
 choose_randomly = If(Mod(Cycle_Iter, 50), 0, 10);
 insert 10
 Fix_Uranium_3(0.5)
ATP(1000, 1) ‘ Totally randomize phases after 1000 iterations

pick_atoms picks atoms with a FWHM of 5 Å, as defined by pick_fwhm; this relatively large
value ensures that the picked atoms are approximately 5 Å apart. Once picked, pick_atoms
removes the atoms with a FWHM as defined by omit_fwhm, and then inserts atoms with a
FWHM of insert_fwhm. A solution of 4lzt takes a minute or two on a laptop computer and a
typical R-factor plot looks like:

19.2 ... Solution of non-triclinic lattices using a known atomic position

Large non-triclinic structures with many origins are difficult to solve. However, because of
symmetry, non-triclinic structures can often be solved when the position of a single atom is
known within the ED. Atoms can be inserted in the ED using insert_atoms; for PDB code 2wfi
we have:

charge_flipping
 cf_hkl_file sf.cif ‘ Structure fact file from PDB
 space_group P212121
 a 37.544 b 65.144 c 69.680
 fraction_reflections_weak 0.5
 add_to_phases_of_weak_reflections = Rand(-180, 180);
 fraction_density_to_flip 0.97
 scale_flipped 0.2
 symmetry_obey_0_to_1 0.25 find_origin 0
 macro Occ_0 { 100 }
 insert_atoms {

Iteration

9008007006005004003002001000

R
-f

a
ct

o
r

1

0.9

0.8

0.7

0.6

0.5

Launch Mode: C:\c\t5\cf-protein\4lzt-P1\solve.inp

Solving proteins at atomic resolution 171

171 Solving proteins at atomic resolution

 activate = Mod(Cycle_Iter, 100) == 0;
 load insert_atom x y z occ {
 0.72697 0.77709 0.11312 100 ‘ Position of known atom
 }
 }

The x, y, z coordinates of insert_atom can be in Cartesian coordinates using the in_cartesian
keyword at the insert_atoms level. The use of symmetry_obey_0_to_1 often assists in solution
determination for non-triclinic structures. 2WFI can be solved ab initio; however, it can be eas-
ily solved if the position of one atom was known as seen by running 2WFI-P212121\1-ATOM.INP;
it gives and R-factor plot that looks like:

The OpenGL plot
(right) shows the so-
lution.

Using any one of the
first six highest opti-
mal ED peaks re-
sults in a solution.
Many structures can
be solved from
knowing the posi-
tion of just one
atom. 1-ATOM.INP
files, similar-to the
2wfi case, are given
for 1ctj, 2pvb, 1c75,
5da6, 1cku, 2wfi.

Iteration

35302520151050

R
-f

a
ct

o
r

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

Launch Mode: C:\c\t5\cf-protein\2wfi-P212121\1-atom.inp

Solving proteins at atomic resolution 172

172 Solving proteins at atomic resolution

19.3 ... Ab initio solution of 5da6 in space group R32

PDB code 5da6 comprises 1390 atoms in the asymmetric unit. Placing an ED peak at any of its
potassium sites result in the correct solution (see 5DA6-R32\1-ATOM.INP). 5da6 can also be
solved ab initio using the following INP file (see 5DA6-R32\SOLVE.INP):

charge_flipping
 cf_hkl_file sf.cif ‘ Structure factor file from PDB
 space_group R32
 a 42.890 b 42.890 c 266.936 ga 120.00
 fraction_reflections_weak 0.5
 add_to_phases_of_weak_reflections = Rand(-180, 180);
 fraction_density_to_flip 0.97
 scale_flipped 0.2
 symmetry_obey_0_to_1 0.25 find_origin 0
 pick_atoms *
 pick_fwhm 5 omit_fwhm 1 insert_fwhm 1
 choose_randomly = If(Mod(Cycle_Iter, 50), 0, 15);
 insert 10
 flip_regime_2 = Sine_Wave(50 / 4, -2, 2, 50);
 ATP(1000, 1) ‘ Randomize all phases every 1000 iterations

It takes approxi-
mately six hours on
average to solve
5da6 using the
above INP file on an
8-core laptop com-
puter. This time is
reduced to 5
minutes on the
Cloud where the
INP file is run simul-
taneously on 500
VMs. The best solu-
tion on each VM
computer or the
best solution over-
all can be viewed
during the process.
Here’s a typical
Cloud run (right):

Miscellanous 173

173 Miscellanous

20. MISCELLANOUS

20.1 ... Outputting special characters

The characters ,(){}[] can be outputted to text files by enclosing them in double quotation
marks. For example:

out aac.txt
Out_String("a,b}c(d")

To output a single apostrophe or double quote character, the escape sequences of %A and
%B can be used respectively, for example, the following:

do_errors
prm b -0.61427_0.01048
out aac.txt

out_record
out_fmt "%V g[h%Bh"
out_eqn = b;

out_record
out_fmt "\n%s%A (brack}et"
out_eqn = "abc";

produces in the AAC.TXT file:

-0.614(10) g[h"h
abc' (brack}et

The escape sequences themselves can be outputted by using two separate out_records. For
example, to output %A use:

Out_String(“%”)
Out_String(“A”)

20.2 ... Iterating over internal data-tree nodes using ‘for’

‘for’ can be used to iterate over all nodes of the internal data tree. For example, to iterate over
the site_recs node the following can be used:

for site_recs {
beq @ 1

}

20.3 ... Command prompt output during INP file loading using print

The keyword print is executed during the loading of INP files; it is useful for determining when
an item is loaded for debugging purposes. For example:

Miscellanous 174

174 Miscellanous

print(“Executed during the loading of INP files”)
#prm a = 1.234;
print(#out a)

20.4 ... Sorting output by columns using _sort_dec or _sort_inc

Columns can be sorted in ascending or descending order using _sort_inc or _sort_dec respec-
tively. For example, the following can be used to sort by d-spacing in descending order and then
by I_no_scale_pks in ascending order:

 xdd...
 str...
 phase_out aac.txt
 out_record
 out_fmt " d = %9.5f"
 out_eqn = D_spacing; _sort_dec 1
 out_record
 out_fmt " I_no_scale_pks = %9.5f"
 out_eqn = I_no_scale_pks; _sort_inc 2
 out_record
 out_fmt " 2Th = %9.5f\n"
 out_eqn = 2 Rad Th;

20.5 ... Creating many xdds at once using new and xdd_file

The new keyword can be used to create many xdds at once, for example:

macro Create_XDDs(n)
{

move_to xdds
move_to xdd_recs
new(xdd, n)

}

See section Error! Reference source not found. for usage of the macro Create_XDDs.

20.6 ... seed, #seed_eqn, seed-tc.txt, seed-tb.txt, Rand

The command line TC.EXE increments the number in the file SEED-TC.TXT to seed the random
number generator and then saves the incremented value back to SEED-TC.TXT file. If using the
GUI version of the program TA.EXE, then the number in the file SEED-TB.TXT is used. #seed is
similar except it is executed at the pre-processor stage of loading INP files. If a number occurs
after either seed or #seed then the random number generator is seeded with that number.

#seed_eqn seeds the random number generator at the preprocessor stage with the equation
value; here are examples:

Miscellanous 175

175 Miscellanous

#seed_eqn seed_1 = Rand(0,32767);
prm value_fed_to_random_number_generator = #out seed_1;
#seed_eqn seed_2 = Run_Number;

The rand function of c++ returns integers between 0 and 32767. This range is extended by the
Rand function with the following code:

inline double Rand(double r1, double r2)
{

const double c0 = 1.0 / double(RAND_MAX);
const double c1 = 1.0 / (1.0 + double(RAND_MAX));
return (rand() + rand() * c0) * c1 * (r2 – r1) + r1;

}

20.7 ... Threading

TOPAS is threaded; this allows for the utilization of multiple processors resulting in faster pro-
gram execution. The degree of speedup is computer and problem dependent. For non-trivial
problems, the gain is 2 to 4 for a 4-core laptop PC with four i7 processors. Attention is paid to
reducing memory usage at the thread level. This is particularly apparent when using rigid bod-
ies or occupancy merge. Except for some penalties all items are threaded; they include peak
generation, all convolutions, all derivatives that are a function of Ycalc, equations that are a
function of changing variables such as X, Th, D_spacing etc..., Pawley refinement, structure
refinement, charge flipping, magnetic refinement, stacking faults, PDF refinement, conjugate
gradient solution method and Indexing.

20.7.1 Setting the maximum number of threads

The program defaults to using the maximum number of threads available. The user can limit
this behaviour by editing the file MAXNUMTHREADS.TXT. This file is read on program start-up; it
contains a single number, let’s call it Max_Threads_File, which defines the maximum number
of threads. Non-existence of the file or a Max_Threads_File of zero results in the program using
the maximum number of threads available. If Max_Threads_File is negative, then the maximum
number of threads is set to the following:

Max_Number_Threads = Max(1, Max_Threads_File + Max_Threads_Available);

20.8 ... Restraining background using the Bkg_at function

The Chebyshev background function, bkg, can sometimes misbehave during Pawley, Le Bail
or deconvolution refinements. In the case of xdd deconvolution refinements, the Deconvolu-
tion_Bkg_Penalty macro stabilizes bkg in most cases. In cases of instability, however, the
Bkg_at(x) function can be used in penalty functions to guide the shape of bkg. Bkg_at(x) returns
the value of bkg at the x-axis position of x. Here’s an example use of Bkg_at as applied to TOF
data:

Miscellanous 176

176 Miscellanous

bkg @ 0.443519294` 0.0200324829` 0.0113774736`
penalty = 1000000 (Bkg_at(2036) - 0.43)^2;
penalty = 1000000 (Bkg_at(9000) - 0.50)^2;
penalty = 1000000 (Bkg_at(14600) - 0.50)^2;

The first penalty restrains the value of bkg at x=2036 to 0.43. Typically, only two to three Bkg_at
penalties are necessary. The values of 0.43, 0.5 and 0.5 can be determined graphically.

20.9 ... Calculation of structure factors

The structure factor F for a site s with adps is the complex quantity:

𝐹(𝐡, 𝜆, 2𝜃) = ∑ {(∑ 𝑇𝑠,𝑒(𝐡𝒆, 2𝜃) 𝑒2𝜋 𝑖 𝐡𝒆 .𝐫𝑠,𝑒

𝑒

) (∑ (𝑓𝑜,𝑠,𝑎(2𝜃, 𝜆) + 𝑓𝑠,𝑎
′ (𝜆)

𝑎𝑠

+ 𝑖𝑓𝑠,𝑎
′′ (𝜆)) 𝑂𝑠,𝑎)}

where
s corresponds to site s
e corresponds to the equivalent position of site s
a corresponds to atom a

𝑂𝑠,𝑎 corresponds to occupancy
𝑇𝑠,𝑒 corresponds to the anisotropic temperature factor
𝑓′ and 𝑓′′corresponds to anomalous dispersion coefficients

(20-1)

For a site with beq, F for a fixed 𝜆 becomes:

𝐹(𝐡, 2𝜃) = ∑ {(∑ 𝑒2𝜋 𝑖 𝐡𝒆 .𝐫𝑠,𝑒

𝑒

) (∑(𝑓𝑜,𝑠,𝑎(2𝜃) + 𝑓𝑠,𝑎
′

𝑎𝑠

+ 𝑖𝑓𝑠,𝑎
′′) 𝑒−𝑏𝑒𝑞𝑠,𝑎 𝑠𝑖𝑛2(𝜃)/𝜆2

𝑂𝑠,𝑎)}

Let

𝐴𝑠 = ∑ 𝑐𝑜𝑠(2𝜋 𝐡𝒆 . 𝐫𝑠,𝑒)𝑒 , 𝐵𝑠 = ∑ 𝑠𝑖𝑛(2𝜋 𝐡𝒆 . 𝐫𝑠,𝑒)𝑒

(20-2)

Separating the real and imaginary parts we get:

Miscellanous 177

177 Miscellanous

𝐹(𝐡, 𝜆, 2𝜃) = ∑ {𝐴𝑠 (∑(𝑓𝑜,𝑠,𝑎(2𝜃, 𝜆) + 𝑓𝑠,𝑎
′ (𝜆))

𝑎

𝑒−𝑏𝑒𝑞𝑠,𝑎 𝑠𝑖𝑛2(𝜃)/𝜆2
) 𝑂𝑠,𝑎)

𝑠

− 𝐵𝑠 (∑ 𝑓𝑠,𝑎
′′ (𝜆)

𝑎

𝑒−𝑏𝑒𝑞𝑠,𝑎 𝑠𝑖𝑛2(𝜃)/𝜆2
𝑂𝑠,𝑎)

+ 𝑖 (𝐴𝑠(𝑓𝑠,𝑎
′′ (𝜆) 𝑒−𝑏𝑒𝑞𝑠,𝑎𝑠𝑖𝑛2(𝜃)/𝜆2

 𝑂𝑠,𝑎)

+ 𝐵𝑠 (∑(𝑓𝑜,𝑠,𝑎(2𝜃, 𝜆) + 𝑓𝑠,𝑎
′ (𝜆))

𝑎

𝑒−𝑏𝑒𝑞𝑠,𝑎 𝑠𝑖𝑛2(𝜃)/𝜆2
𝑂𝑠,𝑎)) }

Approximation 2𝜃 with the Bragg angle and dropping subscripts and defining:

fo,s = a fo,a Oa, fs
' = a fa

' Oa, fs
" = a fa

" Oa (20-3)

we have:

F = s (As + i Bs) (fo,s + fs'+ i fs
")

F = s (As (fo,s +fs') − Bs fs") + i s (As fs" + Bs (fo,s + fs'))

or, F = A + i B

(20-4)

The intensity is proportional to the complex conjugate of the structure factor, or,

F2 = A2 + B2 (20-5a)

or,

F2 = A01
2 + B01

2 + A11
2 + B11

2 + 2 B01 A11 - 2 A01 B11 (20-5b)

where A01= s As (fo,s + fs
'), A11 = s As fs

"

B01= s Bs (fo,s + fs
'), B11 = s Bs fs

"

and A = A01 − B11, B = B01 + A11

Atomic scattering factors, fo,a, comprise 11 values per atom and are found in the file
ATMSCAT_11.CPP. Correspondingly 9 values per atom, obtained from the International Tables,
are found in the file ATMSCAT_9.CPP. Use of either 9 or 11 values can be invoked by running the
batch files USE_9F0 and USE_11F0 respectively. Dispersion coefficients, fa

' and fa
", are by de-

fault from http://www.cxro.lbl.gov/optical_constants/asf.html.

These data, found in the SSF directory, covers the energy range from 10 to 30000eV. The use of
use_tube_dispersion_coefficients force the use of dispersion coefficients from the Interna-
tional Tables for X-ray Crystallography (1995), Vol.C, p384-391 and 500-502, and for O2- from
Hovestreydt (1983). These data are in discrete energy steps corresponding to wavelengths typ-
ically found in laboratory X-ray tubes. For neutron diffraction data, fa

'= fa
"=0 and fo,a is replaced

by the bound coherent scattering length (found in the NEUTSCAT.CPP file) for atom ‘a’.

Miscellanous 178

178 Miscellanous

20.9.1 Friedel pairs

For centrosymmetric structures, the intensities for a Friedel reflection pair are equivalent, or
F2(h k l) = F2(-h-k-l). This holds true regardless of the presence of anomalous scattering and
regardless of the atomic species present in the unit cell. This equivalence in F2 is due to
B01 = B11 = 0 and thus:

F = A01 + i A11 and F2 = A01
2 + A11

2 (20-6)

For non-centrosymmetric structures and for the case of no anomalous scattering, or for the
case where the unit cell comprises a single atomic species, then F2(h k l) = F2(-h-k-l). Or, for a
single atomic species we have:

B01 A11 = (f0 +f') (S BS) f" (S AS), A01 B11 = (f0 +f') (S AS) f" (S BS)

or B01 A11 = A01 B11

(20-7)

and thus, from cancellation in Eq. (20-5b) we get:

F2(h) = F2(-h) = A01
2 + B01

2 + A11
2 + B11

2 (20-8)

For non-centrosymmetric structures and for the case of anomalous scattering and for a struc-
ture comprising more than one atomic species then F2(h)  F2(-h).

20.9.2 Powder data

Friedel pairs are merged for powder diffraction data meaning that the multiplicities as deter-
mined by the hkl generator includes the reflections (h k l) and (-h -k -l); this improves computa-
tional efficiency. Eq. (20-5b) gives the correct intensity for unmerged Friedel pairs and thus it
cannot be used for merged Friedel pairs. Using the fact that:

A01(h) = A01(-h), A11(h) = A11(-h)

B01(h) = B01(-h), B11(h) = B11(-h)

(20-9)

then F2 from Eq. (20-5b) in terms of B01(h) and B11(h) evaluates to:

F2(h) = Q1 + Q2

F2(-h) = Q1 – Q2

where Q1 = A01
2 + B01

2 + A11
2 + B11

2

and Q2 = 2 (B01 A11 – A01 B11)

(20-10)

and for merged Friedel pairs we get:

F2(h) + F2(-h) = 2 Q1 (20-11)

Miscellanous 179

179 Miscellanous

The factor of 2 in Eq. (20-11) is dropped as its included in the multiplicity for h (as given by the
hkl generator). Thus, the final equation describing F2 for powder diffraction data for merged
Friedel pairs is:

F2(h)merged = Q1 (20-12)

The reserved parameter names of A01, A11, B01 and B11 can be used to obtain unmerged real,
imaginary and F2 components and the merged F2. The following macros have been provided in
TOPAS.INC:

macro F_Real_positive { (A01-B11) }
macro F_Real_negative { (A01+B11) }
macro F_Imaginary_positive { (A11+B01) }
macro F_Imaginary_negative { (A11-B01) }
macro F2_positive { (F_Real_positive^2 + F_Imaginary_positive^2) }
macro F2_negative { (F_Real_negative ^2 + F_Imaginary_negative^2) }
macro F2_Merged { (A01^2 + B01^2 + A11^2 + B11^2) }

Note that F2_Merged = (F2_positive + F2_negative) / 2. The reserved parameters
I_no_scale_pks and I_after_scale_pks for str phases are equivalent to the following:

I_no_scale_pks = Get(scale) M F2_Merged

I_after_scale_pks = Get(all_scale_pks) Get(scale) M F2_Merged

In addition, the macros Out_F2_Details and Out_A01_A11_B01_B11 can be used to output F2
details.

20.9.3 Single crystal data

SHELX HKL4 single crystal data comprise unmerged equivalent reflections and thus Eq. (20-
5b) is used for calculating F2. Equivalent reflections are merged by default and can be un-
merged using dont_merge_equivalent_reflections. For centrosymmetric structures, merging
includes the merging of Friedel pairs and thus Eq. (20-12) is used for calculating F2. For non-
centrosymmetric structures, merging excludes the merging of Friedel pairs and thus (20-5b) is
used for calculating F2. dont_merge_Friedel_pairs prevent merging of Friedel pairs. ignore_dif-
ferences_in_Friedel_pairs force the use of Eq. (20-12) for calculating F2. The reserved parame-
ter name Mobs returns the number of observed reflections belonging to a family of reflections.

Merging of equivalent reflections reduces computational effort and is useful in the initial
stages of structure refinement. Only a single intensity is calculated for a set of equivalent re-
flections even in the absence of merging. Thus, equivalent reflections and Friedel pairs is re-
membered and intensities appropriated as required.

*.SCR data is typically generated from a powder pattern and comprises merged equivalent re-
flections including merged Friedel pairs. Consequently, Eq. (20-12) is used for calculating F2;
definitions of dont_merge_equivalent_reflections, dont_merge_Friedel_pairs and ignore_dif-
ferences_in_Friedel_pairs are ignored.

Miscellanous 180

180 Miscellanous

20.9.4 The Flack parameter

[Flack E]

For single crystal data and for non-centrosymmetric structures the Flack parameter (Flack,
1983) scales F2(h) and F2(-h) as follows (see the test example YLIDMA.INP):

F2(h) = Q1 + (1 – 2 Flack) Q2

F2(-h) = Q1 – (1 – 2 Flack) Q2

(20-13)

20.9.5 Single Crystal Output

The macro Out_Single_Crystal_Details, see TOPAS.INC, outputs details for single crystal re-
finement, see test example YLIDMA.INP. Mobs corresponds to the number of observed reflec-
tions belonging to a family of planes. When Friedel Pairs are not merged then Mobs for h and –
h will be different. Phase symmetry is considered in the values for A01, B01, A11 and B11.

20.9.6 2θ point by point calculation of f0 and beq

Structure factors for powder diffraction data typically writes beq and the atomic scattering
factor fo as a function of the Bragg angle 2θo. A more accurate description can be realized us-
ing the str dependent point_by_point_beq_fo_etc which writes the structure factor in terms of
2θ. This calculates fo and beq on a 2θ point-by- point basis rather than 2θo. In routine Rietveld
refinement the difference in structure factor values is small and difficult to detect. It can how-
ever be useful for analysing nanoparticles when extreme accuracy is required. The keyword
only works with X-ray powder data and results in a slight increase in computational effort of
~5%. Reported structure factor values using the reserved parameter names of A01, B01, A11
and B11 are still written in terms of the Brang angle 2θo and are therefore unchanged.

20.10 . Convolution

20.10.1 Instrument and sample convolutions

Diffractometer instrument and sample aberration functions used in peak profile synthesis are
generated from generic convolutions. For example, the ‘simple’ axial divergence model is de-
scribed using the generic convolution circles_conv as defined in the Simple_Axial_Model
macro. Table 20-1 lists instrument convolutions. In addition, the full axial divergence model of
Cheary & Coelho (1998a, 1998b) is supported.

Table 20-1. Instrument and sample aberration functions in terms of 𝜀 = 2𝜃 − 2𝜃𝑘, where 2
is the measured angle and 2k the Bragg angle. RP and RS correspond to the primary and sec-
ondary radius of the diffractometer respectively. 𝜀𝑚 in 2𝜃

Aberrations Name Aberration function Fn()

Instrument

Miscellanous 181

181 Miscellanous

Equatorial divergence
(fixed divergence slits)

EDFA

[]
𝐹𝑛(𝜀) = (4𝜀𝑚𝜀)−

1
2

 𝑓𝑜𝑟 𝜀 = 0 𝑡𝑜 𝜀𝑚 = − (
𝜋

360
) 𝑐𝑜𝑡(𝜃𝑘) 𝐸𝐷𝐹𝐴2

Equatorial divergence
(variable divergence slits)

EDFL

(mm)
𝐹𝑛(𝜀) = (4𝜀𝑚𝜀)−

1
2

𝑓𝑜𝑟 𝜀 = 0 𝑡𝑜 𝜀𝑚 = −
𝐸𝐷𝐹𝐿2 𝑠𝑖𝑛(2𝜃𝑘) (

180
𝜋)

4𝑅𝑆
2

Size of source in the equa-
torial plane

TA

(mm)
𝐹𝑛(𝜀) = 𝐻𝑎𝑡𝑆ℎ𝑎𝑝𝑒, 𝑓𝑜𝑟 −

𝜀𝑚

2
< 𝜀 <

𝜀𝑚

2

where 𝜀𝑚 =
(

180

𝜋
)𝑇𝐴

𝑅𝑆

Specimen tilt; thickness
of sample surface as pro-
jected onto the equatorial
plane

ST

(mm)
𝐹𝑛(𝜀) = 𝐻𝑎𝑡𝑆ℎ𝑎𝑝𝑒, 𝑓𝑜𝑟 −

𝜀𝑚

2
< 𝜀 <

𝜀𝑚

2

Where 𝜀𝑚 =
(

180

𝜋
) cos(𝜃𝑘)𝑆𝑇

𝑅𝑆

Receiving slit length in the
axial plane

SL

(mm)
𝐹𝑛(𝜀) = (

1

𝜀𝑚
) (1 − √

𝜀𝑚

𝜀
)

𝑓𝑜𝑟 𝜀 = 0 𝑡𝑜 𝜀𝑚 = − (
90

𝜋
) (

𝑆𝐿

𝑅𝑆
)

2

cot(2𝜃𝑘)

Width of the receiving slit
in the equatorial plane

SW

(mm)
𝐹𝑛(𝜀) = 𝐻𝑎𝑡𝑆ℎ𝑎𝑝𝑒, 𝑓𝑜𝑟 −

𝜀𝑚

2
< 𝜀 <

𝜀𝑚

2

where 𝜀𝑚 =
(

180

𝜋
)𝑆𝑊

𝑅𝑆

Sample

Linear absorption coeffi-
cient

AB

(cm-1)
𝐹𝑛(𝜀) = (

1


) 𝐸𝑥𝑝 (−

𝜀


)

𝑓𝑜𝑟 𝜀 ≤ 0 and  = 900 sin(2𝜃𝑘)/(𝜋 𝐴𝐵 𝑅𝑆)

20.10.2 Convolutions in general

TOPAS performs convolution in various ways and the terms “FFT convolution” (Fast Fourier
Transform) or “direct convolution” are simplifications. Typically, convolutions are broken
down into double summations that can be calculated either directly or by using an FFT. The
program uses the method that is fastest as determined by calculating the number of opera-
tions required by each method.

Response functions that are known to the program are treated analytically. Response func-
tions that are unknown to the program (such as user defined convolutions) are treated as
straight-line segments. Convolution therefore can be i) between two sets of line segments ii)
one set of line segments and an analytical expression or iii) simply done analytically. When
straight-line segments are used, a response function with Nr data points and a peak compris-
ing Np points, the extra cost of the piece wise integration is approximately 3 (Nr+Np) operations.
This is a small number of operations, and it produces a high degree of accuracy. Apart from

Miscellanous 182

182 Miscellanous

lor_fwhm and gauss_fwhm, the convolutions described below have discontinuities in 2Th
space; associated Fourier transforms are therefore difficult to describe and hence convolution
is performed in 2Th space. Response functions that are treated as line segments are:

user_defined_convolution, capillary_diameter_mm, lpsd_th2_angular_range_degrees

Response functions that are analytically convoluted with line segments are:

exp_conv_const, hat, stacked_hats_conv

Response functions that comprise a mixture of analytical and straight-line segments are:

axial_conv, one_on_x_conv, circles_conv

lor_fwhm and gauss_fwhm convolutions are convoluted analytically with the emission profile
to form the base profile. Convolutions are calculated with an x-axis step size of:

Peak_Calculation_Step = x_calculation_step / convolution_step

For efficiency x_calculation_step should not be defined for data with equal x-axis steps; in-
stead rebin_with_dx_of should be used. The following response functions are calculated at
smaller step sizes without changing Peak_Calculation_Step or Nr:

axial_conv : Step = Peak_Calculation_Step / 2
lpsd_th2_angular_range_degrees : Step = Peak_Calculation_Step / 3
capillary_diameter_mm : Step = Peak_Calculation_Step / 1 to 3

In this manner a high degree of accuracy is maintained and Np*Nr is left unchanged. Typically,
a laboratory diffraction pattern can be accurately synthesized with a Peak_Calculation_Step
of 0.02 degrees 2Th. The next step to increasing accuracy would be to increase convolu-
tion_step to 2 and so on. The computational effort for direct convolution scales by (Nr * Np).
Convolutions that scale by (Nr+Np) are very fast and are:

exp_conv_const, hat, stacked_hats_conv

Calculating derivatives of parameters that are a function of a convolution can be demanding.
Most convolutions however that have multiple dependent parameters require only one recal-
culation of the convolution; exceptions are ft_conv, WPPM_ft_conv and user_defined_convo-
lution. In the case of convolutions that comprise multiple convolution parameters, for exam-
ple, axial_conv with its convolution parameters of primary_soller_angle etc..., then a recalcu-
lation for each of the convolution parameters is required. The following is an overview of con-
volutions and associated aberrations:

axial_conv Full Axial divergence model

one_on_x_conv Equatorial Divergence

circles_conv Simple axial model

capillary_diameter_mm Capillary sample

lpsd_th2_angular_range_degrees LPSD detector

exp_conv_const Sample penetration

Miscellanous 183

183 Miscellanous

hat Receiving slit width, sample tilt

stacked_hats_conv Tube tails

20.10.3 Capillary convolution for a focusing convergent beam

The capillary convolution has been extended to include a focusing convergent beam (Coelho
& Rowles, 2017); syntax is as follows:

[capillary_diameter_mm E]
capillary_u_cm_inv E
[capillary_convergent_beam] [capillary_divergent_beam] [capillary_parallel_beam]
[capillary_focal_length_mm E]
[capillary_xy_n #]

See examples LAB6-STOE.INP and LAB6-D8.INP in the directory TEST_EXAMPLES\CAPILLARY. If
using a str phase then capillary_u_cm_inv can be set to the calculated linear absorption coef-
ficient multiplied by a packing density, for example:

prm packing_density 0.31208
capillary_diameter_mm @ 0.57313

capillary_u_cm_inv
= Get(mixture_MAC) Get(mixture_density_g_on_cm3) packing_density;

capillary_focal_length_mm @ 197.89657
capillary_convergent_beam

If capillary_focal_length_mm is not defined, then it defaults to the diffractometer radius Rs.

20.10.4 ft_conv

[ft_conv_re_im] …
[ft_conv_re E]
[ft_conv_im E]
[ft_min !E]
[ft_x_axis_range !E]
‘ Get(ft_0)
‘ FT_Break

Examples
TEST_EXAMPLES\FT\

ALVO4A.INP
VOIGT.INP

Fourier Transform (FT) of a response function that is convoluted into phase peaks using a Fast
Fourier Transform (FFT); for example, to convolute a Voigt into a phase, the following can be
used:

ft_conv = Exp(-(Pi FT_K gfwhm)^2 / (4 Ln(2)) - Pi FT_K lfwhm);
ft_min = 1e-8; ‘ this is the default; ft_min is optional
ft_x_axis_range = 40 lfwhm;

ft_conv is equal to the two keywords [ft_conv_re_im ft_conv_re]. More than one transform can
be defined. See ft_conv and WPPM_ft_conv for details. Here the convolution theorem is used
by multiplying the FT of a Gaussian by the FT of a Lorentzian. If the Fourier transforms are sep-
arately defined, the program will internally use the convolution theorem. FT_K is a reserved

Miscellanous 184

184 Miscellanous

parameter; it returns the transform k divided by the x-axis range of the peak; this range includes
ft_x_axis_range. ft_x_axis_range is a mandatory equation defined such that the transform de-
cays to near zero; peak tails will otherwise be incorrect. A Lorentzian for example needs a large
ft_x_axis_range for accurate tails. ft_min defines the smallest value to which the transform is
calculated to. For example, an already broadened peak in x-axis space will have a relatively
narrow transform; the calculation of the transform is therefore terminated when
FT(k)/FT(k=0)<ft_min. Transform values for larger k are then set to zero. If(,,) constructs can
instead be used within the transform equation for further control; for example:

ft_conv = If (FT_K > D, FT_Break, Sphere(FT_K, D));

Here the calculation of the FT is terminated when FT_K>D using FT_Break. Get(ft_0) returns
FT(k=0) and can be used within the ft_conv equation, for example:

ft_conv = {
def a = Exp(-Pi FT_K lf);
return If(a < 1e-6 Get(ft_0), FT_Break, a);

}

ft_conv integrates with convolutions that are performed in direct space. It can be used within
peak stack operations, and it can be a function of the reserved parameter names:

H, K, L, M, Th, Xo, D_spacing, FT_K

Multiple ft_conv (s) can be defined at either the xdd or phase level. When defined at the xdd
level the convolution is applied to all phases of that xdd. The TEST_EXAMPLES\FT directory
comprises examples that use ft_conv. For a typical Rietveld refinement, an ft_conv used to
describe a Voigt is almost as fast as the analytical equivalent as seen in example
FT\ALVO4A.INP. For high accuracy, the range of the peak, as defined with ft_x_axis_range,
needs to be large, up to 400 FWHM for a Lorentzian; in these cases, the ft_conv is considerably
slower as seen in FT\VOIGT.INP.

FT\ALVO4A.INP compares the use of spherical_harmonics_hkl with and without ft_conv as fol-
lows.

prm csl 50 min 3 max = Min(Val 2 + 0.1, 10000);
prm csg 50 min 3 max = Min(Val 2 + 0.1, 10000);
prm csl_fwhm = 0.1 Rad Lam / (csl Cos(Th));
prm csg_fwhm = 0.1 Rad Lam / (csg Cos(Th));
if 1 {

‘ Spherical Harmonics
spherical_harmonics_hkl sh

sh_order 2
load sh_Cij_prm {

y00 !sh_c00 1
y20 sh_c20 0
y21p sh_c21p 0
y21m sh_c21m 0
y22p sh_c22p 0
y22m sh_c22m 0

}
existing_prm csl_fwhm *= sh;

Miscellanous 185

185 Miscellanous

existing_prm csg_fwhm *= sh;
}
if 0 {

‘ use analytical Lorentzian and Gaussian convolution
lor_fwhm = csl_fwhm;
gauss_fwhm = csg_fwhm;

} else {
‘ use Fourier Transform convolution
ft_conv = Exp(-(Pi FT_K csg_fwhm)^2 / (4 Ln(2)) - Pi FT_K csl_fwhm);

ft_x_axis_range = 45 csl_fwhm + 4 csg_fwhm;
}

The speed of the analytical convolution is greater not simply because describing the peak an-
alytically is faster but because derivatives of multiple parameters for lor_fwhm (or
gauss_fwhm) requires only one peak calculation; whereas for ft_conv the peak is recalculated
for each independent parameter that it is a function of.

20.10.4.1 ft_conv compared to user_defined_convolution

If a response function is known in x-axis space, then it is often best to perform the convolution
in x-axis space rather that describing the FT of the response function using ft_conv. user_de-
fined_convolution can be used to perform convolution in x-axis space and the speed at which
it operates is as fast or faster than ft_conv depending on the x-axis range of the response func-
tion; this is demonstrated in FT\LORENTZIAN.INP. For each peak, user_defined_convolution es-
timates the computational effort required to perform the convolution either directly or with an
FFT and chooses the one with the least computational effort. Examples that use user_de-
fined_convolution are as follows:

FT\LORENTZIAN.INP
TOF\TOF_BANK2_2.INP
WPPM\GAMMA.INP
UDEFA.INP

UDEFA.INP shows how to convolute a function with discontinuities, i.e.

user_defined_convolution = Exp(-20 X^2); min = -.2; max = .5;

The FT for functions with such discontinuities often cannot be described analytically.

20.10.4.2 .. FFT versus direct summation

Typically an FFT convolution for a response function that comprise histograms is quoted as
comprising O(N log2N) operations (Cooley–Tukey algorithm for example). Direct convolution is
quoted as comprising O(N2) operations and is only faster for N<128. However, in XRD work a
direct convolution rather than an FFT working on real numbers is often faster for N ~< 256 to
512 as the comparison of the O(N log2N) versus O(N2) is not strictly correct. To see why con-
sider a response function comprising 3 points and a peak comprising 5 points. A convolution
can be pictured as the response function R moving along the peak P as follows:

Miscellanous 186

186 Miscellanous

P 0 0 0 1 1 1 1 1 0 0 0
R - - x
R - x x
R x x x
R x x x
R x x x
R x x -
R x - -

In this representation each ‘x’ can be considered a multiply; in direct convolution this makes
a total of 15 multiplies (Nr*Np) and not N2 where N/2≤(Nr+Np)≤N. To perform such a convolution
using an FFT, the number of operations is approximately 4*16*log216=256 multiplies where 16
is the closest power of 2 to Nr+Np. Of course, FFT routines typically also have special cases for
small N; nonetheless N=256 to 512 is not small and many peaks in XRD work typically com-
prise less points and many of the response functions have a small Nr; these include axial di-
vergence, equatorial divergence, receiving slit width, capillary convolution, LPSD convolution
and often sample penetration. Another factor favouring direct convolution for modest Nr and
Np is the fact that modern processors such as the Intel i7 are very fast when data in cache
memory are arranged sequentially and accessed sequentially. In fact, non-sequential opera-
tions can be as much as 8 times slower than for the sequential case.

20.10.5 WPPM

[WPPM_ft_conv_re_im E]...
[WPPM_ft_conv_re E]
[WPPM_ft_conv_im E]
WPPM_L_max E
WPPM_th2_range E
[WPPM_break_on_small !E]
[WPPM_correct_Is]

Examples
TEST_EXAMPLES\WPPM\

GAMMA.INP
GAMMA-FIT-OBJ.INP
SPHERE-FIT-OBJ.INP
SUPER-LORENTZIAN.INP
COMPARE-1.INP
S-SPHERE-1.INP
CUBE-LN-NORMAL-1.INP
LN-NORMAL-1.INP

WPPM_ft_conv is equal to [WPPM_ft_conv_re_im WPPM_ft_conv_re].

20.10.5.1 WPPM in 2Th space

The WPPM microstructure analysis (Scardi & Leoni, 2001; Leoni et al. 2004; David et al. 2010)
for domains comprising spheres and a gamma distribution can be implemented using
user_defined_convolution operating in 2Th space as shown in GAMMA.INP.

20.10.5.2 WPPM using fit_obj(s)

For cases where microstructure broadening is far greater than instrument/emission profile
broadening then fit_obj’s can be used to describe the peak shape (see GAMMA-FIT-OBJ.INP and
SPHERE-FIT-OBJ.INP), for example:

 fn gamma_mu_variance(mu, v, xo) {
 def s = 2 (Sin(X Pi/360) - Sin(xo Pi/360)) / lam;

Miscellanous 187

187 Miscellanous

 def p0 = Pi s mu;
 def p = If(Abs(p0) < 1e-10, 1, p0);
 def q = 2 p / v;
 return mu v / p^4
 (
 2 p^2 / (2 + v) + (v/(2+ 3 v + v^2)) (1 - (1 + q^2)^(-.5 v)
 Cos(v ArcTan(q)) - 2 p (1 + q^2)^(-.5 (v+1)) Sin((1 + v)
 ArcTan(q)))
);
 }

Example SUPER-LORENTZIAN.INP is useful for asking the question; can spheres with a gamma
distribution describe a 1/(1+x^2)^m type function? Example COMPARE-1.INP is useful for ask-
ing the question; can a Voigt fit to a particular case of spheres with a gamma distribution?

20.10.5.3 WPPM using WPPM_ft_conv

WPPM_ft_conv describes a FT in s space and performs a convolution on phase peaks that have
been interpolated to s space, for example:

WPPM_ft_conv = 1 - 1.5 WPPM_L / D + 0.5 (WPPM_L / D)^3;
WPPM_L_max = D;
WPPM_th2_range = 25 .1 Rad Lam / (D Cos(Th));
WPPM_break_on_small 1e-7
WPPM_correct_Is

The result is then interpolated back to 2Th space. Interpolations are scaled such that
I(s)ds = I()d when WPPM_correct_Is is defined; the effects of this scaling is typically small at
low angles and becomes noticeable at very high angles reaching a maximum at 180 degrees
2Th where the derivative of Cos(Th) is at a maximum.

When multiple WPPM_ft_conv(s) are defined then the program will internally use the convolu-
tion theorem.

WPPL_L is a reserved parameter name that returns the transform parameter.

WPPM_L_max defines the maximum WPPL_L.

Get(ft_0) and FT_Break can both be used in WPPM_ft_conv in a manner similar-to ft_conv.

The calculation of the Fourier transform is terminated when WPPM_ft_conv_re is less than

WPPM_break_on_small multiplied by the value of WPPM_ft_conv_re evaluated at WPPM_L = 0.

If WPPM_break_on_small is not defined, then no check is made to terminate the transform.

The tails of WPPM peaks extend for almost the whole diffraction pattern; they can be short-
ened using WPPM_th2_range; in the above example, this range has been written in terms of
the fwhm as defined in the Scherrer equation. WPPM_ft_conv can be a function of the following
reserved parameter names:

H, K, L, M, Th, Xo, D_spacing, WPPM_L

Miscellanous 188

188 Miscellanous

Example S-SPHERE-1.INP uses WPPM_ft_conv to fit to a synthesized WPPM generated peak
with identical results. Example CUBE-LN-NORMAL-1.INP can be used to test these macros.
Lattice parameters appearing within the macros are made constant using Constant; these
convolutions are therefore made independent of lattice parameter changes and hence sepa-
rate convolutions are not initiated whilst calculating lattice parameter derivatives.

WPPM_Ln_k is a reserved parameter name that returns Ln of an integer and is used to calcu-
late Ln(Kc WPPM_L) in a fast manner.

The example LN-NORMAL-1.INP can be used for visualizing a Ln normal distribution. It uses the
Ln_Normal_x_at_CD function to determine the limit of the distribution.

20.10.6 Microstructure convolutions

The Double-Voigt approach (Balzar, 1999) is supported for modelling microstructure effects.
Crystallite size and strain comprise Lorentzian and Gaussian component convolutions varying
in 2 as a function of 1/cos() and tan() respectively.

20.10.6.1 Preliminary equations

The following preliminary equations are based on the unit area Gaussian, GUA(x), Lorentzian,
LUA(x), and pseudo-Voigt PVUA(x) functions as given in Table 5-2.

Height of GUA(x) and LUA(x) respectively:

GUAH = GUA(x=0) = g1 / fwhm

LUAH = LUA(x=0) = l1 / fwhm

Gaussian and Lorentzian respectively with area A:

G(x) = A GUA(x)

L(x) = A LUA(x)

Height of G(x) and L(x) respectively:

GH = A GUA

LH = A LUAH

Integral breadth of Gaussian and Lorentzian respectively:

G = A / GH = 1 / GUAH = fwhm / g1

L = A / LH = 1 / LUAH = fwhm / l1

Unit area Pseudo Voigt, PVUA:

PVUAH =  LUAH + (1-) GUAH

PV = 1 / PVUAH

A Voigt is the result of a Gaussian convoluted by a Lorentzian:

Miscellanous 189

189 Miscellanous

V = G(fwhmG)  L(fwhmL)

where "" denotes convolution and fwhmG and fwhmL are the FWHM of the Gaussian and
Lorentzian components. A Voigt can be approximated using a Pseudo Voigt. This is done nu-
merically where:

V(x) = G(fwhmG)  L(fwhmL) = PVUA(x, fwhmPV)

By changing units to s (Å-1):

s = 1/d = 2 sin() / 

and differentiating and approximating ds/d = s / we get:

s = (2 cos() / ) 

thus:

fwhm(s) = fwhm(2) cos() / 

IB(s) = IB(2) cos() / 

20.10.6.2 Crystallite size and strain

Crystallite Size: Gaussian and Lorentzian component convolutions are:

fwhm(2) of Gaussian = (180/)  / (cos() CS_G)

fwhm(2) of Lorentzian= (180/)  / (cos() CS_L)

(2) of Gaussian = (180/)  / (cos() CS_G g1)

(2) of Lorentzian = (180/)  / (cos() CS_L l1)

or, according to Balzar (1999), in terms of s, GS and CS:

fwhm(s) of Gaussian = (180/) / CS_G

fwhm(s) of Lorentzian = (180/) / CS_L

GS(s) =(s) of Gaussian = (180/) / (CS_G g1)

CS(s) =(s) of Lorentzian = (180/) / (CS_L l1)

The macros CS_L and CS_G are used for calculating the CS_L and CS_G parameters respec-
tively. Determination of the volume weighted mean column height LVol, LVol-IB and LVol-
FWHM is as follows:

LVol-IB = k / Voigt_Integral_Breadth_GL (1/CS_G, 1/CS_L)

LVol-FWHM = k / Voigt_FWHM_GL(1/CS_G, 1/CS_L)

The macro LVol_FWHM_CS_G_L is used for calculating LVol-IB and LVol-FWHM.

Miscellanous 190

190 Miscellanous

Strain: Strain_G and Strain_L parameters corresponds to the fwhm(2) of a Gaussian and a
Lorentzian that is convoluted into the peak, or,

fwhm(2) of Gaussian = Strain_G tan()

fwhm(2) of Lorentzian= Strain_L tan()

(2) of Gaussian = Strain_G tan() / g1

(2) of Lorentzian = Strain_L tan() / l1

or, according to Balzar (1999), in terms of s, CD and GD:

fwhm(s) of Gaussian = Strain_G sin() /  = Strain_G s / 2

fwhm(s) of Lorentzian = Strain_L sin() /  = Strain_L s / 2

GD(s)/s0 s = (s) of Gaussian = (Strain_G / g1) s / 2

CD(s)/s0 s = (s) of Lorentzian = (Strain_L / l1) s / 2

The macros Strain_L and Strain_G are used for calculating the Strain_L and Strain_G parame-
ters respectively. From these equations we get:

GD(s) = s0 Strain_G / (2 g1)

CD(s) = s0 Strain_L / (2 l1)

According to Balzar (1999), equation (34):

e = D(2) / (4 tan())

where D(2) is the fwhm of a Voigt comprising a Gaussian with a fwhm = Strain_G Tan() and
a Lorentzian with a fwhm = Strain_L Tan(). The value for e0 is given by:

4 e0 Tan() = FWHM of the Voigt from Strain_G and Strain_L

 = Voigt_FWHM_GL(Strain_G, Strain_L) Tan()

or,

e0 = Voigt_FWHM_GL(Strain_G, Strain_L) ( / 360) / 4

The macro e0_from_Strain calculates e0 using the equation function Voigt_FWHM_GL.

20.11 . Loading of INP files

20.11.1 if {} else if {} else {}

 ‘if’ operates during the loading of pre-processed INP files, syntax is as follows (see TEST_EX-
AMPLES\ZRO2.INP):

Miscellanous 191

191 Miscellanous

if expression {
} else if expression {
} else expression {
}

expression can be any valid TOPAS equation without the semicolon; in addition, expression
can contain the functions Prm_There(prm_name) and Obj_There(obj_name). The following is
equivalent to a /* */ block comment:

if 0 {
...

}

A more complex construct could look something like:

xdd
 local aaa 1
 str ...
 local aaa 2
 str ...
 local aaa 3
 hkl_Is
 if Prm_There(aaa) {
 Out(aaa, "\nThis is the aaa at the xdd level %-1.6f")
 if aaa == 2 {

Out_String("\nNot written to file as aaa at the xdd level is 1")
 }
 } else if Obj_There(hkl_Is) {
 Out_String("\nYes this is a hkl_Is phase")
 } else {
 Out_String("\naaa is not there and this is not a hkl_Is phase")
 }
for xdds {

if And(Obj_There(neutron), Obj_There(pk_xo)) {
‘ Neutron TOF

} }

20.12 . Functions – fn, def, return, noinline

Functions can be defined using fn; here’s an example of a recursive function:

fn factorial(x) { return If(x == 1, 1, x factorial(x-1)); }
prm = factorial(5); : 120

There’s also the simple form where the return statement is implied:

fn factorial(x) = If(x == 1, 1, x factorial(x-1));

The equation part of prm objects can have a function body (see the Robust_Refinement macro
in TOPAS.INC), for example:

prm = { def a = 2; return a; }

Miscellanous 192

192 Miscellanous

Most importantly, functions can reference parameters defined using prm; this simplifies the
writing of prm equations and additionally memory usage can be greatly reduced when noinline
is used. Equations called def objects can be used and defined within non-simple functions.
Here’s an example:

fn gauss(a, x, f, g) {
def a1 = 2 Sqrt(Ln(2) / Pi) / f;
def a2 = 4 Ln(2);
def a3 = (x / f);
return a1 Exp(-a2 a3^2);

}

A def object must be defined prior to its use. They can be assigned to other def objects but not
to objects of prm type. In other words, prm objects are write-protected within functions. The
arguments to functions can be def or prm objects. c-style braces can be used to scope varia-
bles; the following will throw an exception due to the attempted use of an uninitialized def ob-
ject:

fn foo(x) { def a; { def a = x; } return a; }
prm = foo(3); : 0 ‘ Exception thrown

The following will not throw an exception as the simplification routines recognizes ‘0’:

Fn a(x) = x undefined_name 0; prm = a(3); : 0

Functions can be nested, for example:

fn foo() {

def a, b;
a = 3; b = 2;
fn nested(x, y) { return Sqrt(x^2 + y^2); }
return nested(a, b);

}
prm = foo(); : 3.60555

def and prm objects have scope which determines the actual object used.

Here def ‘a’ is returned:

fn a(a) { def a = 2; return a; } prm = a(1) : 2

Here prm ‘a’ is returned:

prm a = 2; fn a() = a; prm = a(); : 2

Here the argument ‘a’ is returned:

prm a = 2; fn a(a) = a; prm = a(3); : 3

Function specifics:

Miscellanous 193

193 Miscellanous

• fn's are a kernel operation and not a pre-processor operation.

• fn's must be defined prior to their use.

• fn arguments are optional but parentheses must be used.

• a fn cannot be defined with a name of a previously defined fn name.

• fn's are inlined by default.

• Non-nested fn’s can be prevented from being inlined with the noinline prefix.

• nested functions cannot be prefixed with noinline.

Use of noinline can often be slower than not using noinline; this is because a stack mechanism
is used for the fn arguments, additionally the global simplification routines cannot simplify
what’s inside a noinline function. Functions are therefore ‘inlined’ (the word ‘expand’ is some-
times used) by default. A macro can be considered an inlined function and there’s no differ-
ence in how the following is finally processed:

fn my_max(a, b, c) = Max(a, b, c);
macro & my_max(& a, & b, & c) { Max(a, b, c) }

The macro, by definition, is inlined in the pre-processed INP file. In the case of fn, the program
will inline ‘my_max’. Prefixing fn with noinline prevents in-lining, for example:

noinline fn gauss(x, f)=(2 Sqrt(Ln(2)/Pi)/f) Exp(-4 Ln(2)((X-x)/f)^2);

Its best to inline small functions as it gives the simplification routines a chance to simplify
what’s inside the function with regards to its surroundings. Consider the following:

noinline fn a(b, c) = b^2 + c^2;
prm p1 1
prm !p2 1
prm p3 1
prm !p4 1
prm p5 = a(p1, p2) + a(p3, p4); : 0

Without inlining, the simplification routines won’t see that p2 and p4 are constants inside the
‘a’ function and hence no simplification is performed; the ‘a’ function will be called twice, and
the stack used twice. Note, stack here refers to the computer algebra stack. With inlining, p5
after simplification reduces to:

prm p5 = p1^2 + p3^2 + 2; : 0

In the case of large functions, not inlining may increase performance as the signalling of equa-
tion nodes for recalculation will be reduced. Inlined functions have scope allowing the use of
the Get(…) function, for example:

Miscellanous 194

194 Miscellanous

fn lat(h, k, l) = h Get(a) + k Get(b) + l Get(c);
str ...

lor_fwhm = lat(H, K, L) - lat(-H, -K, -L);

20.12.1 Subject independent single crystal refinement

The example \FUNCTIONS\ALVO4-FN.INP performs a single crystal refinement using computer
algebra. No subject dependent keywords are used and instead only the following six keywords
are used:

fn, noinline, def, return, prm, restraint

The speed of ALVO4-FN.INP is 7.4 times slower than the comparable subject dependent equiv-
alent of ALVO4-NORMAL.INP. Much of the difference in speed is in the calculation of the Co-
sines necessary for the structure factors. Importantly, convergence and the behaviour of the
parameters are similar. The placement of noinline is important. Also used is out_refine-
ment_stats which outputs the following:

First pass equation statistics excluding attribute equations
 Number of equations : 534
 Number of nodes : 99751
 Number of nodes if expanded : 12070283

Number of penalties/restraints: 532
Number of independent penalty/restraints parameters: 58
Number of penalties/restraints: 532
Number of independent penalty/restraints parameters: 58

Time 0.13
Second pass equation statistics excluding attribute equations
 Before/After equation simplification
 Number of equations : 549 553
 Number of nodes : 99766 8354
 Number of nodes if expanded : 12070298 228183
Number of objects taking part in refinement: 73
Number of dependent parameters with derivatives wrt to Ycalc: 15

The ALVO4-FN.INP demonstrates the ease at which an entire single crystal refinement can be
performed; it should allow for user defined temperature factors etc.

20.12.2 Computer algebra and out_refinement_stats

The computer algebra system CAS in version 5 (Coelho et al., 2011) is around 2 to 4 times
faster than version 4; compare with running ROSENBROCK-10.INP or PVS.INP. The CAS has
been reworked and it now operates on a global level where equations are simplified across all
objects. The out_refinement_stats keywords, for SERINE_I_EVANS_N_TA_BANG_ROT.INP for ex-
ample, outputs the following equation statistics:

Second pass equation statistics excluding attribute equations
 Before/After equation simplification
 Number of equations : 2707 3085
 Number of nodes : 22941 16671

Miscellanous 195

195 Miscellanous

 Number of nodes if expanded : 1706390373 1070170132

Number of objects taking part in refinement: 2595
Number of dependent parameters with derivatives wrt to Ycalc: 2319

20.13 . CIF

The following macros and Get’s can be used to output data in CIF format:

Out_CIF_STR(file)
Out_CIF_ADPs(file)
Out_CIF_STR(file, with_id)
Out_CIF_Bonds_Angles(file)
Get(number_of_parameters)
Get(refine_ls_shift_on_su_max)
Get(weighting)
Xi = a reserved parameter name

_refine_ls_shift / su_max can be accessed using Get(refine_ls_shift_on_su_max) when do_er-
rors is defined and when continue_after_convergence is NOT defined. A message similar-to
the following is displayed on calculation:

refine_ls_shift_on_su_max 0.409610469 corresponds to parameter m501b939c_3 of object prm_10

Get(weighting) and Xi can be used as follows:

 xdd_out file append load out_record out_fmt out_eqn {
 " %9.0f" = Xi;
 " %11.5f" = X;
 " %11.5f" = Ycalc;
 " %11.5f" = Yobs;
 " %11.5f\n" = Get(weighting);
 }

Get(weighting) returns weighting as defined by the User; if weighting is not defined then the
following is returned:

1 / Max(1, Yobs), if SigmaYobs does not exist

1 / SigmaYobs^2, if SigmaYobs does exist

Get(weighting) returns zero for x-axis regions that are excluded using exclude. If weighting is a
function of Ycalc etc... then it returns the last weighting calculated depending on re-
cal_weighting_on_iter.

20.14 . Laue refinement

Single crystal Laue diffraction data can be refined; data files have the extension *.HKL-LAM;
see directory TEST_EXAMPLES\LAUE. Laue_Lam is a reserved parameter name that can be
used in hkl type equations; it returns the reflection dependent wavelength. The merging of
equivalent reflections and Friedel_pairs are not allowed with Laue refinement; the following
keywords are internally defined with Laue refinement:

Miscellanous 196

196 Miscellanous

dont_merge_equivalent_reflections
dont_merge_Friedel_pairs

and the following messages reported:

Equivalent reflections not merged
Friedel pairs not merged

20.15 . Learnt Shapes for Background or Otherwise

[xdd]...
[user_y $name { #include $file }]... | [user_y $name
$file]...

[1xye_format]
[1rebin_with_dx_of !E]
[1user_y_hat E] …
[1user_y_gauss_fwhm E] …
[1user_y_lor_fwhm E] …
[1user_y_exp_conv_const E [user_y_exp_limit E]…

Examples

TEST_EXAMPLES\USER_Y\
USER_Y_CONVOLUTION.INP

1New user_y dependents. user_y_hat, user_y_gauss_fwhm, user_y_lor_fwhm and
user_y_exp_conv_const are identical to the hat, gauss_fwhm and lor_fwhm and
exp_conv_const convolutions except they are applied to user_y data.

user_y can be used to add, multiply and in general manipulate data files of different x-axis
steps. For example, to add two data files, square the result and then multiply by the x-axis re-
served parameter X, the following can be used:

user_y f1 file1.xy
user_y f2 file2.xy
yobs_eqn result.sst = X (f1 + f2)^2; min 10 max 100 del 0.01

The test example USER_Y\USER_Y.INP fits five fit objects to the quartz triplet using a learnt peak
shape defined using user_y; the fit with the individual fit_obj’s displayed, using the Plot_Fit_Obj
macro, looks like:

Miscellanous 197

197 Miscellanous

The test example USER_Y\USER_Y_CONVOLUTION.INP fits five fit objects to a simulated pattern
using a learnt peak shape defined using user_y convoluted with user_y_exp_conv_const and
user_y_gauss_fwhm; the INP file looks like:

'#define CREATE_SIMULATED_
continue_after_convergence

macro FO_Peak(& p, & pe, & a, & x, & s)
 {
 fit_obj = a p;
 min_X = -pe s + x; max_X = pe s + x;
 fo_transform_X = (X - x) / s;
 }

prm !peak_extent 2

#ifdef CREATE_SIMULATED_
 iters 0
 user_y peak { _xy -0.01 0 0 100 0.01 0 }
 user_y_exp_conv_const @ 1 min 0.5 max 2
 user_y_gauss_fwhm @ 0.1 min 0.1 max 2
 yobs_eqn = 1; min 66 max 70 del 0.01
 gui_ignore ‘ don’t load data file into GUI
 Out_X_Ycalc(user_y_convolution.xy)
#else
 ' Fit to the simulated peak
 user_y peak { _xy -0.01 0 0 100 0.01 0 }
 user_y_exp_conv_const @ 1 min 0.5 max 2 val_on_continue = Rand(0.5, 2);
 user_y_gauss_fwhm @ 0.1 min 0.1 max 1 val_on_continue = Rand(0.1, 1);
 xdd user_y_convolution.xy
#endif
 start_X 66
 finish_X 70

2Th Degrees

68

C
o

u
n

ts
17,000

16,000

15,000

14,000

13,000

12,000

11,000

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

-1,000

user_y 1 0.00 %

user_y 2 0.00 %

user_y 3 0.00 %

user_y 4 0.00 %

user_y 5 0.00 %

Miscellanous 198

198 Miscellanous

 bkg @ 100
 prm a1 1000 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm a2 2000 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm a3 3000 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm a4 2000 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm a5 1500 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm x1 67.7 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm x2 67.9 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm x3 68.1 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm x4 68.3 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm x5 68.5 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm s1 0.7 val_on_continue = Rand(0.5, 2); min 0.5 max 2
 prm s2 0.9 val_on_continue = Rand(0.5, 2); min 0.5 max 2
 prm s3 1.1 val_on_continue = Rand(0.5, 2); min 0.5 max 2
 prm s4 1.0 val_on_continue = Rand(0.5, 2); min 0.5 max 2
 prm s5 0.8 val_on_continue = Rand(0.5, 2); min 0.5 max 2

 FO_Peak(peak, peak_extent, a1, x1, s1) Plot_Fit_Obj("user_y 1")
 FO_Peak(peak, peak_extent, a2, x2, s2) Plot_Fit_Obj("user_y 2")
 FO_Peak(peak, peak_extent, a3, x3, s3) Plot_Fit_Obj("user_y 3")
 FO_Peak(peak, peak_extent, a4, x4, s4) Plot_Fit_Obj("user_y 4")
 FO_Peak(peak, peak_extent, a5, x5, s5) Plot_Fit_Obj("user_y 5")

fo_transform_X is a dependent of fit_obj and it can be used to transform X used within the
fit_obj. This is useful for cases where the user_y x-axis is different to the Yobs x-axis. The user_y
NAME {...} usage allow shapes to be typed directly into the INP file using the _x1_dx tag. A tri-
angle for example is formulated as follows:

user_y NAME {
_x1_dx -1 1 /* start and step */
0 1 0 /* the shape data */

}

Multiple user_y(s) can be defined, and each can be used any number of times in equations that
can be a function of X. The test example USER_Y.INP loads a single shape and stretches and
scales it five different ways onto a diffraction pattern to fit the Quartz triplet. Convergence is
as fast as with any other refinement.

20.16 . Emission Profile with Absorption Edges

[modify_peak]
[modify_peak_apply_before_convolutions]
[modify_peak_eqn !E]

[current_peak_min_x !E]
[current_peak_max_x !E]

Get(current_peak)
Get(current_peak_x)

Examples
TEST_EXAMPLES\ABSORPTION-EDGE \

AL2O3-PAM.INP
SPINNEL-PAM.INP

modify_peak can be used to modify peak profiles either before convolutions or after. Function-
ality is realized by using the internal data objects of Get(current_peak_x) and Get(cur-
rent_peak); these two objects return the x-axis wavelength being processed and the current

Miscellanous 199

199 Miscellanous

calculated peak intensity respectively. Here are plots from AL2O3-PAM.INP and SPINNEL-
PAM.INP that has an identical absorption edge modelled for both Al2O3 and Spinnel samples:

When no_th_dependence is defined then Get(current_peak_x) returns the x-axis of the point
being calculated; when no_th_dependence is not defined then Get(current_peak_x) returns
the wavelength of the point being calculated.

20.17 . scale_phase_X keyword

[scale_phase_X E]...

Examples
TEST_EXAMPLES\ SCALE_PHASE_X.INP

Scales Ycalc point by point. It can be used, for example, to define the Lorentz Polarization fac-
tor on an x-axis basis rather than on a peak basis as is the case for scale_pks. Some main
points for scale_phase_X:

• Can be a function of X

• Multiple definitions allowed and each applied to the pattern.

• Can occur at the xdd and/or phase level.

Here’s an example:

xdd ...
scale_phase_X ...
str scale_phase_X ...
hkl_Is scale_phase_X ...

The first str is multiplied by the first and second scale_phase_X; the hkl_Is phase is multiplied
by the first and third scale_phase_X.

2Th Degrees

60555045403530252015105

S
q

rt
(C

o
u

n
ts

)

90

80

70

60

50

40

30

20

10

0

Corundum Al2O3 100.00 %

LiMn2O4 100.00 %

Miscellanous 200

200 Miscellanous

20.18 . Refining on f0, f’ and f”

[f0_f1_f11_atom]...
[f0 E] [f1 E] [f11 E]

Examples
TEST_EXAMPLES\F0-F1-F11\

XRAY-POWDER.INP
TOF.INP

User defined atomic scattering factors, f0, and anomalous dispersion coefficients, f1 and f11.

Example usage:

report_on_str
load f0_f1_f11_atom f1 f11 {

Ba @ -0.160127754 2.3954287
Ge 0.184162081 1.86162161

}

High correlations exist between f1, f11, scale and beq parameters. f0_f1_f11_atom can be
used at the str, xdd and global levels. f1 and f11 can be defined and refined independently.
Defaults are used when f1 or f11 are not defined. The examples XRAY-POWDER.INP and TOF.INP
demonstrates the use of f0, f1 and f11. The f0 parameter can be a function of the reserved
parameter D_spacing, Th and X; for example:

prm a1 25 min -50 max 50
load f0_f1_f11_atom f0 f11 {

Pb+2
= a1 Exp(1.058874 (-0.25) / D_spacing^2) +
 16.496822 Exp(0.106305 (-0.25) / D_spacing^2) +
 19.984501 Exp(6.708123 (-0.25) / D_spacing^2) +
 6.813923 Exp(24.395554 (-0.25) / D_spacing^2) +
 5.233910 Exp(1.058874 (-0.25) / D_spacing^2) +
 4.065623; ‘ this is f0 for Pb
 @ 5 ‘ this is f11 for Pb

}

For X-ray data f0 is by default obtained from the file ATMSCAT.CPP. For neutron data f0 corre-
sponds to the neutron scattering length from the NEUTSCAT.CPP file. Neutron scattering
lengths can be refined, see example TOF.INP. no_f11 instructs the program to ignore f11. This
increases speed with little change in Ycalc. report_on_str reports on f1 and f11, or neutron
scattering lengths used. No values are reported when d_spacing_to_energy_in_eV_for_f1_f11

is used. To disable the effects of f0, f1 and f11, for say CeO2, then the following could be used:

load f0_f1_f11_atom f0 f1 f11 {
Ce+4 1 0 0
O-2 1 0 0

}

20.18.1 Using a user defined table to input f0 values via user_y

Atomic scattering factors f0 can be defined in a *.XY file and used via the user_y keyword as
follows:

Miscellanous 201

201 Miscellanous

xdd …
user_y C_f0_table C_f0_table.xy ‘ x-axis are the D_spacings
str

load f0_f1_f11_atom f0 f1 f11 { C = C_f0_table; 0 0 }
…

Here the C_F0_TABLE.XY file comprises D_spacing and f0 value pairs which are used to de-
scribe f0 values for the C atoms within the structure. In the above example, f1 and f11 are set
to zero.

20.19 . Invalid f1 and f11

The following message is displayed when there are no valid entries for f’ and f” in the corre-
sponding NFF file:

Invalid f1 and f11 for O in file ...\ssf\o.nff
for the wavelength 0.399826.
Setting value(s) to zero

In such cases the user may choose to manually define f’ and f’’ using f1 and f11 respectively.
Also useful is to view f’ and f’’ NFF files found in the ssf directory using the GUI Tools menu:

20.20 . Isotopes and Atom Names

ISOTOPES.TXT is used for obtaining isotope weights. The same atom names can be used for
both neutron_data and x-ray data as the program will do the appropriate conversion. For ex-
ample:

site ... occ Mg ...
site ... occ Mg+2 ...
site ... occ 24Mg ...
site ... occ 26Mg ...
site ... occ 26Mg+2 ...

In the cases of ‘Mg’ and ‘Mg+2’ the atomic weight used is the ‘Standard Weight’ as defined in
ISOTOPES.TXT. In the cases of ‘26Mg’ and ‘26Mg+2’ the atomic weight used is the isotope
weight as defined in ISOTOPES.TXT. Note the ‘+2’ is dropped when searching that file. The
atomic weight for 24Mg is not the same as that for Mg. When 24Mg is used then the isotope
weight for 24Mg is used. When Mg is defined then the standard weight is used. The standard
weight corresponds to the mean weight of the naturally occurring Mg isotopes.

In the case of x-rays:

Miscellanous 202

202 Miscellanous

• atomic scattering factors used (from file ATMSCAT.CPP) for 26Mg and 26Mg+2 corresponds
to those of Mg or Mg+2 respectively. Numbers occurring at the start of the symbol are
dropped when searching ATMSCAT.CPP.

• f’ and f’’ corrections (files in SSF directory) correspond to that for Mg. In other words, the
numbers occurring at the start of the symbol as well as the charge (i.e. ‘+2’ in this case) are
dropped.

In the case of neutrons:

• scattering lengths used are from the NEUTSCAT.CPP file; the charge ‘+2’ is dropped when
searching NEUTSCAT.CPP.

Internally the program converts ‘D’ and ‘T’ to ‘2H’ and ‘3H’ respectively.

20.21 . Atomic data files and associated sources

Table 20-2. Files read when atomic data is sought. The references refer to the source of the
data. In many cases the format of the data file corresponds to the original source format.

ANOMDISP.CPP : f’ and f’’ for Laboratory X-ray tubes. File is read if there are no associated
SSF*.NFF file or if use_tube_dispersion_coefficients is defined.

ATMSCAT.CPP : f0 or Elastic Photon-Atom Scattering, relativistic form factors; data from
http://www.esrf.fr/computing/expg/subgroups/theory/DABAX/dabax.html

ATOM_COLORS.DEF : Red, Green, Blue (RGB) CPK atom colors from

http://www.bio.cmu.edu/Courses/BiochemMols/Periodic/ElemList.htm. Used for as-
signing colors to atoms when displaying in OpenGL.

ATOM_RADIUS.DEF : Atomic radii and Covalent radii from

http://www.esrf.fr/cgi-bin/periodic.

ISOTOPES.TXT : Atomic Weights and Isotopic Compositions for All Elements from

http://physics.nist.gov/PhysRefData/Compositions/

MAGDATA.DAT : Data from GSAS data file via the International tables. Data correction for V
entry made by Robert Von Dreele.

NEUTSCAT.CPP : Neutron scattering lengths from http://www.ccp14.ac.uk/ccp/web-mir-
rors/neutrons/n-scatter/n-lengths/LIST~1.HTM

NO_POLYHEDRA.DEF : Disables drawing of polyhedral for atoms listed.

SSF*.NFF : Anomalous scattering factors f’ and f’’ for a range of wavelengths from

http://www-cxro.lbl.gov/optical_constants/asf.html

The present data is in three columns “E(eV),f1,f2” where f'=f1–Z and f''= f2 and the conver-

sion from wavelength to energy scale is:

E(eV)=10^5/(8.065541*Lambda(Ang)).

http://www.esrf.fr/computing/expg/subgroups/theory/DABAX/dabax.html
http://www.bio.cmu.edu/Courses/BiochemMols/Periodic/ElemList.htm
http://www.esrf.fr/cgi-bin/periodic
http://physics.nist.gov/PhysRefData/Compositions/
http://www.ccp14.ac.uk/ccp/web-mirrors/neutrons/n-scatter/n-lengths/LIST~1.HTM
http://www.ccp14.ac.uk/ccp/web-mirrors/neutrons/n-scatter/n-lengths/LIST~1.HTM
http://wwwcxro.lbl.gov/optical_constants/asf.html

Miscellanous 203

203 Miscellanous

MAC\ZNN.HTML : X-Ray Mass Attenuation Coefficients from

http://www.nist.gov/pml/data/xraycoef/index.cfm

20.22 . Removing Phases during refinement

[remove_phase !E] Examples
TEST_EXAMPLES\REMOVE-PHASE.INP

Allows for phase removal during refinement through use of the Remove_Phase macro. Typical
usage is:

for strs {
Remove_Phase(0.3, 0.5)

}

Here a phase is removed if its weight percent is below 0.3% and if the error in the weight per-
cent is greater than 0.5 times the weight percent. The phase removal process is executed at
the end of a Cycle. The following text is displayed on removal of a phase:

*** Deleting phase: Corundum ***
*** Deleting phase: Zincite ***
 etc...

Refinement is terminated when no phases are removed during a Cycle.

20.23 . Numerical Lorentzian and Gaussian Convolutions

For fundamental and pseudo-Voigt peak types, Lorentzian and Gaussian convolutions are per-
formed analytically during the calculation of the emission profile Voigt. Therefore, lor_fwhm
and gauss_fwhm are still calculated at the emission profile level even when defined between
push_peak and add_pop_1st_2nd_peak keywords.

20.24 . Space groups, hkls and symmetry operators

[space_group $symbol]

Used to define the space group where $symbol can be any symbol (case insensitive) occurring
in the file SGCOM5.CPP, it can also be a space group number; here are some examples:

space_group "I a -3"
space_group ia-3
space_group P_63_M_C
space_group I_41/A_M_D
space_group I_41/A_M_D:2 ‘ defines second setting of I_41/A_M_D
space_group 206
space_group 222:2 ‘ defines second setting of 222

Symmetry operators are generated by SGCOM6.EXE and placed into a SG*.SG file with a name
similar-to the name of the space group. Space group details for space groups with names

http://www.nist.gov/pml/data/xraycoef/index.cfm

Miscellanous 204

204 Miscellanous

containing the characters ‘/’ or ‘:’ are placed in files with file names similar-to the space group
but with the characters replaced by ‘o’ and ‘q’ respectively. The reason for this is that file names
containing these characters are not allowed on some operating systems. hkl generation uses
information in *.sg files.

20.24.1 User defined rotational matrices

Space group generator - User defined rotational matrices can be added to the file
SGROTS3.CPP found in the main TA directory.

20.25 . Defining hkls using use_hklm

hkls are automatically generated for str phases. This behaviour can be changed using the
use_hklm keyword such that hkls become User-defined; for example:

str…
load use_hklm {
 2 2 0 12
 2 2 2 8

 …
}

20.26 . Cross correlation function

[cross_corr $name #value
cross_corr_s !E

Examples

CROSS-CORR\CROSS.INP

cross_corr calculates the cross-correlation function for a triangle of x-axis width cross_corr_s.
cross_corr_s can be an equation that can be a function of Cycle_Iter which allows for changing
the width of the triangle in situ. $name is a name that can be given to the function and #value
is the value of the cross-correlation function. $name can be used in the chi2 keyword for ob-
taining lattice parameters. However, as can be seen in the example CROSS.INP, using normal
refinement with a triangle convolution is much faster than using the cross-correlation func-
tion. CROSS.INP is an informative example and it looks like:

#prm USE_CROSS_CORRELATION = 1; ‘ Set to zero to see normal refinement
#prm INCLUDE_HATS = 1; ‘ This is for normal refinement
macro DEL_ { Rand(-1, 1) 0.5 } ‘ Change in lattice parameters at the start of a Cycle
macro AA { }

continue_after_convergence
verbose 1
iters 2000

RAW(..\pbso4)
 rebin_with_dx_of 0.01
 CuKa5(0.0001)
 LP_Factor(17)
 Radius(173)
 Full_Axial_Model(10, 10, 10, !sol 3.77616`, !sol 3.77616`)
 Divergence(1)
 Slit_Width(0.2)

Miscellanous 205

205 Miscellanous

 bkg AA -792.524948 767.974856 -305.050785 121.658117 -45.020282 18.2136589
 One_on_X(AA, 22265.9137`)

 ZE(AA,-0.0110740988)

 finish_X 60
 extra_X_right 10

 #if (USE_CROSS_CORRELATION)
 cross_corr corr 0
 cross_corr_s 3
 chi2 = -Ln(corr); : 0
 macro SCALE_ { }
 #else
 ' Normal refinement
 #if (INCLUDE_HATS)
 hat @ 1 val_on_continue 2 max 2 num_hats 2
 #endif
 macro SCALE_ { @ }
 #endif

 STR(P_b_n_m) ' PbSO4
 space_group P_b_n_m
 macro LP_(v) { v val_on_continue = v + DEL_; min = v - 3; max = v + 3;
 a @ LP_(6.962377)
 b @ LP_(8.483133)
 c @ LP_(5.400478)
 site Pb x AA 0.16717 y AA 0.18778 z 0.25 occ Pb+2 1 beq AA 1.47495
 site S x AA 0.18429 y AA 0.43563 z 0.75 occ S 1 beq AA 0.85254
 site O1 x AA 0.09441 y AA 0.59667 z 0.75 occ O-2 1 beq AA 1.05681
 site O2 x AA 0.03611 y AA 0.31151 z 0.75 occ O-2 1 beq AA 1.63474
 site O3 x AA 0.31549 y AA 0.42069 z AA 0.97553 occ O-2 1 beq AA 1.49181

 CS_L(AA, 274.77)
 Strain_L(AA, 0.035898)
 scale SCALE_ 0.000335087199

Running cross.inp with USE_CROSS_CORRELATION set to 1 gives an Rwp plot of:

Running cross.inp with USE_CROSS_CORRELATION set to 0 (normal refinement) gives an Rwp
plot of:

2,0001,8001,6001,4001,2001,0008006004002000

500

400

300

200

100

Launch Mode: C:\w\test_examples\cross-corr\cross.inp

2,0001,8001,6001,4001,2001,0008006004002000

250

200

150

100

50

Launch Mode: C:\w\test_examples\cross-corr\cross.inp

Miscellanous 206

206 Miscellanous

20.27 . Site identifying strings

Keywords such as operate_on_points use a site identifying string which can contain the wild
card character * and the negation character !. The wild card character * used in O* means that
sites with names starting with O are considered. In addition to using the wild card character,
site names can be written explicitly within double quotation marks. Table 20-3 shows some

operate_on_points strings and the corresponding sites identified.

Table 20-3. operate_on_points strings and corresponding sites identified.

str
 site Pb1 ...
 site S1 ...
 site O1 ...
 site O2 ...
 site O31 ...
 site O32 ...
 site O4 ...

$sites Sites identified

* Pb1, S1, O1, O2, O31, O32, O4

Pb* Pb1

“Pb1 S*” Pb1, S1

O* O1, O2, O31, O32, O4

“O* !O3*” O1, O2, O4

“O* !O1 !O2” O31, O32, O4

20.28 . Occupancies and symmetry operators

Only unique positions are generated from symmetry operators. Fully occupied sites therefore
require site occupancy values of 1. A comparison of atomic positions is performed in the gen-
eration of the unique positions with a tolerance in fractional coordinates of 10-15. It is therefore
necessary to enter fractions in the form of equations when entering fractional atomic coordi-
nates that have recurring values such as 0.33333..., 0.66666... etc., for example:

use: x = 1/3; y = 1/3; z = 2/3;

instead of: x 0.33333 y 0.33333 z 0.66666

20.29 . Pawley and Le Bail extraction

[lebail #]

Use the following input segment for Le Bail intensity extraction (see example LEBAIL1.INP):

hkl_Is space_group p-1 lebail 1 ...

Use the following input segment for Pawley intensity extraction (see example PAWLEY1.INP):

hkl_Is space_group p-1 ...

hkls are generated in the absence of hkl_m_d_th2 keywords. After refinement, details for the
generated hkl’s are appended after the space_group keyword. For the Pawley method, once
the hkl details are generated, parameter equations can be applied in the usual manner to the

I parameters.

Miscellanous 207

207 Miscellanous

20.30 . Anisotropic refinement models

Keywords that can be a function of H, K, L and M, as shown in Table 2-3, allow for the refine-
ment of anisotropic models including preferred orientation, and peak broadening. An im-
portant consideration when dealing with hkls in equations is whether to work with hkls or
whether to work with their multiplicities. The Multiplicities_Sum macro can be used when
working with multiplicities, for example:

prm a 0 th2_offset = Multiplicities_Sum(If(Mod(L, 2) == 0, a Tan(Th), 0));

L here corresponds to the L's of the multiplicities. A completely different viewpoint than to re-
fine on half widths is to consider the distribution of lattice metric parameters within a sample.
Each crystallite is regarded as having its own lattice parameters, with a multi-dimensional dis-
tribution throughout the powder sample. This can be achieved by adding the same structure
several times to the input file.

20.30.1 Spherical harmonics

spherical_harmonics_hkl can be applied to both peak shapes, for anisotropy, and intensities
for a preferred orientation correction. Preferred orientation can be described using the

PO_Spherical_Harmonics(sh, order) macro, where "sh" is the parameter name and "order" the
order of the spherical harmonics. scale_pks is used to correct peak intensities as follows:

macro PO_Spherical_Harmonics(sh, order) {
 spherical_harmonics_hkl sh
 sh_order order
 scale_pks = sh;
}

Example clay.inp uses spherical_harmonics_hkl for describing anisotropic peak broadening
using the exp_conv_const convolution as follows:

str ...
 spherical_harmonics_hkl sh
 sh_order 8
 exp_conv_const = (sh-1) Tan(Th);

20.30.2 Miscellaneous models using User defined equations

Anisotropic Gaussian broadening as a function of L (see example CEO2HKL.INP):

str ...
 prm a 0.1 min 0.0001 max 5
 prm b 0.1 min 0.0001 max 5
 gauss_fwhm = If(L==0, a Tan(Th) + 0.2, b Tan(Th));

Anisotropic peak shifts as a function of L (th2_offset):

Miscellanous 208

208 Miscellanous

str ...
 prm at 0.07 min 0.0001 max 1
 prm bt 0.07 min 0.0001 max 1
 th2_offset = If(L == 0, at Tan(Th), bt Tan(Th));

Description of anisotropic peak broadening using the March (1932) relation and str_hkl_angle:

str ...
 str_hkl_angle ang1 1 0 0
 prm p1 1 min 0.0001 max 2
 prm p2 0.01 min 0.0001 max 0.1
 lor_fwhm = p2 Tan(Th) Multiplicities_Sum(((p1^2 Cos(ang1)^2 +
 Sin(ang1)^2 / p1)^(-1.5)));

20.31 . Simulated annealing and structure determination

Defining continue_after_convergence and a temperature regime is analogous to defining a
simulated annealing process (Coelho, 2000). After convergence, a new refinement cycle is in-
itiated with parameter values changed according to any defined val_on_continue attributes
and rand_xyz or randomize_on_errors processes. Simulated annealing is therefore not spe-
cific to structure solution, see for example ONLYPENA.INP and ROSENBROCK-10.INP. Conver-
gence is determined when the change in 𝜒2 is less than chi2_convergence_criteria for three
consecutive cycles and when all defined stop_when parameter attributes evaluate to true. Ex-
ample:

chi2_convergence_criteria = If(Cycle_Iter < 10, 0.001, 0.01);

For structure solution in real space, the need for computation efficiency is critical. In many
cases computation speed can be increased by up to a factor of 20 or more with the appropriate
choice of keywords. Keywords that facilitate speed are:

chi2_convergence_criteria...
quick_refine...
yobs_to_xo_posn_yobs...

Another category is one that facilitate structure solution by changing the form of 𝜒2:

penalties_weighting_K1...
penalty...
occ_merge...
rigid...

Further keywords and processes typically used are:

file_name_for_best_solutions
seed
temperature !E ...
 move_to_the_next_temperature_regardless_of_the_change_in_rwp
 save_values_as_best_after_randomization
 use_best_values
xdd ... or xdd_scr ...
 str ...

Miscellanous 209

209 Miscellanous

 site ... rand_xyz ...

20.31.1 Penalties used in structure determination

Introducing suitable penalties can reduce the number of local minima in 𝜒2 and correspond-
ingly increase the chances of obtaining a global minimum. The structure factor for a reflection
with Miller indices 10 0 0 for a two-atom triclinic unit cell with fractional atomic coordinates of
(0,0,0) and (x, 0,0) is given by 4 cos(hx)2; here there are 10 local minima for 0<x<1. If it was
known that the bond length distance is half the distance of the a lattice parameter then a suit-
able penalty would reduce the number of minima to one. In this trivial example the number of
minima increases as the Miller indices increase. For non-trivial structures and for the im-
portant d spacing range near inter-atomic distances of 1 to 2Å the number of local minima is
very large. Bragg reflections with large Miller indices that are heavily weighted are expected to
contain many false minima; by applying an appropriate weighting scheme to the diffraction
data the search for the global minimum can be facilitated. For powder data the default
weighting scheme is:

weighting = If(Yobs <= 1, 1, 1 / Yobs);

For single crystal data the following, which is proportional to 1/d, works well:

weighting = 1 / (Sin(X Deg / 2) Max(Yobs,1));

A more elaborate scheme which also works well for single crystal data is:

weighting = (Abs(Yobs-Ycalc) / Abs(Yobs+Ycalc) + 1) / Sin(X Deg / 2);

Two penalty functions that have shown to facilitate the determination of structures are the anti-
bumping (AB) penalty and the potential energy penalty U. The anti-bumping penalty is written
as:

𝐴𝐵𝑖 = {
∑(𝑟𝑖𝑗 − 𝑟𝑜)

2
, for 𝑟𝑖𝑗 < 𝑟𝑜 and 𝑖 ≠ 𝑗

0, for 𝑟𝑖𝑗 > 𝑟𝑜

(20-14)

where r0 is a bond length distance, rij the distance between atoms i and j including symmetry
equivalent positions and the summation is over all atoms of type j. The ai_anti_bump and

box_interaction keywords are used to implement the penalty of Eq. (20-15) using the
AI_Anti_Bump and Anti_Bump macros respectively. Typically, Anti bump constraints are ap-
plied to heavy atoms; an overuse of such constraints can in fact hinder simulated annealing in
finding the global minimum. Applying the constraint for the first few iterations of a refinement
cycle can also be beneficial; this is achieved in the AI_Anti_Bump macro by writing the penalty
in terms of the reserved parameter Cycle_Iter; see for example CIME-DECOMPOSE.INP.

The grs_interaction can be used to calculate the Lennard-Jones or Born-Mayer potentials and
it is suited to ionic atomic models (see example ALVO4-GRS-AUTO.INP). For a site i they com-
prise a Coulomb term Ci and a repulsive term Ri and is written as:

Miscellanous 210

210 Miscellanous

𝑈𝑖 = 𝐶𝑖 + 𝑅𝑖 (20-15)

where 𝐶𝑖 = 𝐴 ∑
𝑄𝑖𝑄𝑗

𝑟𝑖,𝑗
, 𝑖𝑖,𝑗 ≠ 𝑗

𝑅𝑖 = ∑
𝐵𝑖,𝑗

𝑟𝑖,𝑗
𝑛 , for Leonard Jones and 𝑖

𝑖,𝑗

≠ 𝑗

𝑅𝑖 = ∑ 𝑐𝑖,𝑗 𝑒𝑥𝑝(−𝑑 𝑟𝑖,𝑗), for Born − Mayer and 𝑖

𝑖,𝑗

≠ 𝑗

where A = e2/(40) and 0 is the permittivity of free space, Qi and Qj are the ionic valences of
atoms i and j, ri,j is the distance between atoms i and j and the summation is over all atoms to
infinity. The repulsive constants Bi,j, n, ci,j and d is characteristic of the atomic species and their
potential surrounds. The equation part of the grs_interaction is typically used to describe the
repulsive terms.

20.31.2 Bond length restraints

Example ALVO4-GRS-AUTO.INP defines a bond length restraint using the GRS series between
an Aluminum site and three Oxygen sites. Valence charges have been set to +3 and –2 for Alu-
minum and Oxygen, respectively. The expected bond length is 2 Å between for O-O bonds and
1.5 Å for Al-O bonds:

site Al x @ 0.7491 y @ 0.6981 z @ 0.4069 occ Al+3 1 beq 0.25
site O1 x @ 0.6350 y @ 0.4873 z @ 0.2544 occ O-2 1 beq 1
site O2 x @ 0.2574 y @ 0.4325 z @ 0.4313 occ O-2 1 beq 1
site O3 x @ 0.0450 y @ 0.6935 z @ 0.4271 occ O-2 1 beq 1
Grs_Interaction(O*, O*, -2, -2, oo, 2.0, 5) penalty = oo;
Grs_Interaction(Al, O*, 4, -2, alo, 1.5, 5) penalty = alo;

The following example defines a bond length restraint using the AI_Anti_Bump macro between
a Potassium site and three Carbon sites. The expected bond length is 4 Å between Potassium
sites and 1.3 Å between Carbon sites.

site K x @ 0.14305 y @ 0.21812 z @ 0.12167 occ K 1 beq 1
site C1 x @ 0.19191 y @ 0.40979 z @ 0.34583 occ C 1 beq 1
site C2 x @ 0.31926 y @ 0.35428 z @ 0.32606 occ C 1 beq 1
site C3 x @ 0.10935 y @ 0.30991 z @ 0.39733 occ C 1 beq 1
AI_Anti_Bump(K , K , 4 , 1)
AI_Anti_Bump(C*, C*, 1.3, 1)

Unlike the first example, there's no explicit definition of a penalty function as the AI_Anti_Bump
macro includes the penalty function.

Miscellanous 211

211 Miscellanous

20.32 . Not saving extrapolated peaks when doing intensity derivatives

str…

[dont_save_extrapolated_pks]

The process of adding peaks to a calculated profile from the peaks buffer can be computation-
ally intensive. This process occurs many times during a refinement iteration when, for exam-
ple, calculating the derivatives of a site fractional atomic coordinate. An in-between step is
therefore performed where interpolated peak data is stored. The memory requirements for the
interpolated data can be large and in cases where memory is an issue then the keyword
dont_save_extrapolated_pks can be used.

20.33 . Applying lp_search to TOF data

lp_search cannot be directly applied to TOF data. However, it is relatively easy to convert the
TOF data to 2Th data where lp_search can be used. The examples TEST_EXAMPLES\TOF\TOF-
TO-Q.INP is an example that converts the data to 2Th and then applies lp_search. The conver-
sion is as follows:

I(Q) = Intensity(TOF) dTOF/dQ

Q = 2 Pi / d

d = 2 Pi / Q

TOF = t0 + t1 d + t2 d^2 = t0 + t1 2 Pi / Q + t2 (2 Pi)^2 / Q^2

dTOF/dd = t1 + 2 t2 d;

dd/dQ = -2 Pi / Q^2;

dTOF/dQ = dTOF/dd dd/dQ

If t0 = t2 = 0 we get:

dTOF/dQ = -t1 2 Pi / Q^2 = -t1 D_spacing^2 / (2 Pi)

Or in INP format we have:

xdd TOF-DATA.XY
 x_calculation_step = Yobs_dx_at(Xo) .5;prm !t0 0
 prm !t1 6171.89377
 prm !t2 0
 prm !d = X / t1;
 prm !Q = 2 Pi / d;
 prm !dtof_dd = t1 + 2 t2 d;
 prm !dd_dQ = -2 Pi / Q^2;
 prm !dtof_dQ = dtof_dd dd_dQ;
 xdd_out TOF-to_Q.xy load out_record out_fmt out_eqn
 {
 " %11.6f " = 2 Pi / d;
 " %11.6f\n" = Yobs Abs(dtof_dQ);
 }

20.34 . Correction for dispersion using modify_peak_eqn

Example: TEST_EXAMPLES\DISPERSION\DISP.INP

Miscellanous 212

212 Miscellanous

The shape of the emission profile changes with 2 due to dispersion such that:

I(lam) dlam = I(th) dth

or,

I(th) = I(lam) dlam_dth

Differentiating Bragg’s with respect to  we have:

dlam_dth = 2 d Cos(th)

or,

I(th) = I(lam) 2 d Cos(th)

Rearranging we get:

I(th) = lam I(lam) Cot(th)

The point by point intensity of the emission profile therefore changes as function of Cot(th).
DISP.INP show difference between correcting for and not correcting for dispersion as follows:

The peak shape of the above is as follows:

hat 0.1 num_hats 3 ' specimen/instrument
lam ymin_on_ymax 0.0000001 la 1 lo !lam_0 1.540596 lh 0.5

modify_peak_eqn =
Get(current_peak)

2Th Degrees

2.22.152.12.0521.951.91.851.81.75

C
o

u
n

ts

700

650

600

550

500

450

400

350

300

250

200

150

100

50

0

2

Miscellanous 213

213 Miscellanous

If (And(Get(current_peak_x)>(lam_0-1.5),Get(current_peak_x)<(lam_0+ 1.5)),
1 / Tan(ArcSin(Get(current_peak_x) / (2 D_spacing))),
0

);
modify_peak_apply_before_convolutions

20.35 . File types and formats

Table 20-4. File types.

*.PRO Project files.

*.INP Input file in INP format.

*.OUT Output file created on termination of refinement in INP format.

*.STR Structure data. Same format as *.INP.

*.LAM Source emission profile data. Same format as *.INP.

*.DEF Program defaults. Same format as *.INP.

*.LOG TOPAS.LOG and TC.LOG. Useful for tracking input errors.

Measurement Data

*.SST Implies an equal x-axis and has the format of “start, step, data points….”
SST files can be used instead of *.XY files. As x-axis values are not used, they
save space on creation as well as on loading. For equal x-axis data then the
macro Out_XDD_SST can be used in the following manner:

xdd …
Out_XDD_SST(filename.sst) = Ycalc; ‘ outut Ycalc
Out_XDD_SST(filename.sst) = Yobs – Ycalc; ‘ output difference plot

*.RAW Bruker AXS binaries (DIFFRAC AT and DIFFRACplus)

*.DAT, *.XDD, *.CAL, *.XY, *XYE ASCII file formats, see Table 20-5

*.SCR ASCII file format comprising lines of h, k, l, m, d, 2, and Fo.

*.HKL ShelX HKL4 format.

Structure and structure factor data

*.CIF Crystallographic Information File; International Union for Crystallography.

*.FCF CIF file representation of structure factor details suitable for generating Fou-
rier maps using ShelX.

Table 20-5. ASCII input data file formats. *.XY, *.XYE, *.XDD and *.CAL are white space delim-
ited and can contain line and block comments.

*.DAT, LHPM/RIET7/CSRIET

 Line 1-4 Comments
 Line 5 Start, Step and Finish angle
 Line 6 … Observed XRD data points

Miscellanous 214

214 Miscellanous

GSAS ("std - const", "alt - ralf"), use gsas_format

 Line 1 Legend
 Line 2 Item 3: Number of data points
 Line 3 … Depending on item10 and item5
 For item10 = "STD" and item5 = "CONST"

xmin = item6/div
step =item7/div
read(10(i2,F6.0) iww(i),y(i) i=1, npts
sigma(i)=sqr(y(i)/iww(i)) i=1, npts

For item10 = "ALT" and item5 = "RALF"
xmin = item6/32
step = item7/32
read(4(F8.0,F7.4,F5.4) x(i), y(i), sigma(i) i=1, npts
x(i) = x(i)/32 i=1, npts
do i = 1, npts-1
 div = x(i+1)-x(i)
 y(i) =1000 * y(i)/div
 sigma(i) = 1000 * sigma(i)/div
end do

rk (constant wavelength data): div = 100
rk (time of flight data): div = 1

FullProf (INSTRM = 0: free format file), use fullprof_format

 Line 1 Start angle, step width, finish angle, comments
Line 2 … Observed XRD data points (any number of rows)

*.XDD, *.CAL Line 1 Optional line for comments
Line 2 … Start, Step and Finish angle
 Next three numbers are unused
 Observed XRD data points

*.XY 2 and intensity data values
*.XYE 2, intensity and intensity error values.

20.36 . Batch mode operation – TC.EXE

The command line program tc.exe provides for batch mode operation. Running tc.exe without
arguments displays help information. Running an INP file called PBSO4.INP is as follows:

tc pbso4

Macros can be passed to the command line. Passing a file name to an INP file is as follows:

1) Create a TEMPLATE.INP file with the required refinement details, this could look like the
following:

Miscellanous 215

215 Miscellanous

xdd FILE
etc...

2) TEMPLATE.INP is fed to TC.EXE at the command line; the word FILE (within TEMPLATE.INP)
is expanded to whatever the macro on the command line contains; for example:

tc ...\file_directory\template.inp "macro FILE { file.xy }"

The macro called FILE is described on the command line within quotation marks. On running
tc.exe the word 'FILE' occurring in TEMPATE.INP is expanded to 'file.xy'. More than one macro
can be described on the command line. To process a whole directory of data files, say *.XY file
for example, then:

1) Execute the following DOS command from the file directory:

dir *.xy > ...\main_ta_directory\xy.bat

The XY.BAT file will then reside in the main TA directory.

2) Edit ...\MAIN_TA_DIRECTORY\XY.BAT to look like the following:

tc ...\file_directory\template "macro FILE { file1.xy }"
copy ...\file_directory\template.out ...\file_directory\file1.out
tc ...\file_directory\template.inp "macro FILE { file2.xy }"
copy ...\file_directory\template.out ...\file_directory\file2.out
etc...

After each run of TC.EXE a TEMPLATE.OUT file is created containing refined results. This file is
copied to files FILE1.OUT, FILE2.OUT etc.... After running XY.BAT a number of *.OUT files is cre-
ated one for each *.XY file. In summary tc.exe receives TEMPLATE.INP to process. Words oc-
curring in TEMPLATE.INP are expanded depending on the macros described on the command
line.

Keywords 216

216 Keywords

21. KEYWORDS

21.1 ... Data structures

The following describes keyword dependencies. Trailing ‘...’ implies that more than one node of
that type can be inserted under its parent. Items enclosed in square brackets are optional.
Items beginning with a capital T corresponds to keyword groups analogous to complex types
in XML.

Ttop
Tcomm_1
Tcomm_2
Ttop_xdd
Tglobal
Txdd
Txdd_scr
Tindexing
Tcharge_flipping

Ttop_xdd
[convolution_step #1]
[Rp !E] [Rs !E]
[x_calculation_step !E]

Tglobal
TMinimization
Trwp
[A_matrix] [C_matrix] [A_matrix_normalized] [C_matrix_normalized]
[conserve_memory]
[file_name_for_best_solutions $file]
[force_positive_fwhm]
[inp_text $name] …[inp_text_insert $name { … }]…
[iters #]
[no_LIMIT_warnings]
[num_cycles #]
[out_A_matrix $file]
[out_refinement_stats]
[out_rwp $file]
[out_prm_vals_per_iteration $file]... | [out_prm_vals_on_convergence $file]...
[out_prm_vals_on_end $file]…
[process_times]
[randomise_file_out_normal $file]
[seed [#]]
[suspend_writing_to_log_file #1]
[temperature !E]...
[use_tube_dispersion_coefficients]
[verbose #1]

Keywords 217

217 Keywords

Txdd
[xdd $file [{$data}] [range #] [xye_format] [gsas_format] [fullprof_format]]...

Ttop_xdd
Txdd_comm_1
Tcomm_1
Tcomm_2
Tmin_max_rc
Trwp
[gui_add_bkg !E]
[xdd_sum !E] and [xdd_array !E]
[xo_Is]...

[xo E I E]...
Tcomm_1_2_phase_1_2

[d_Is]...
[d E I E]...
Tcomm_1_2_phase_1_2
[lebail #]

[hkl_Is]...
[lp_search !E]
[I_parameter_names_have_hkl $start_of_parameter_name]
[hkl_m_d_th2 # # # # # # E I E]...
Tspace_group
Tcomm_1_2_phase_1_2
Thkl_lat
[lebail #]

[str | dummy_str]...
Tstr_details
Thkl_lat
Tcomm_1_2_phase_1_2
Tmin_max_rs
[rigid]...
Tspace_group

Tcomm_1_2_phase_1_2
Tcomm_1
Tcomm_2
Tphase_1
Tphase_2

Txdd_scr
[xdd_scr $file] ...

Txdd_comm_1
Tcomm_2
Ttop_xdd
Tmin_max_r
[str]...

Tstr_details

Keywords 218

218 Keywords

Tphase_1
Tcomm_2
Thkl_lat
Tmin_max_r
[rigid]...
Tspace_group
Tscr_1

Tscr_1
[Flack E]
[i_on_error_ratio_tolerance #]
[num_highest_I_values_to_keep #]

Txdd_comm_1
[bkg [@] # # #...]
[degree_of_crystallinity #]
[d_spacing_to_energy_in_eV_for_f1_f11 !E]
[exclude #ex1 #ex2]...
[extra_X_left !E] [extra_X_right !E]
[fit_obj E [min_X !E] [max_X !E]]...
[neutron_data]
[rebin_with_dx_of !E]
[smooth #]
[start_X !E] [finish_X !E]
[weighting !E [recal_weighting_on_iter]]
[xdd_out $file [append]]...

Tout_record
[yobs_eqn !N E]
[yobs_to_xo_posn_yobs !E]

Tcomm_1
[axial_conv]...
[capillary_diameter_mm E]...
[lpsd_th2_angular_range_degrees E]...
[circles_conv E]...
[exp_conv_const E [exp_limit E]]...
[ft_conv E]...
[gauss_fwhm E]...
[h1 E h2 E m1 E m2 E]
[hat E [num_hats #1]]...
[modify_peak]
[more_accurate_Voigt]
[lor_fwhm E]...
[numerical_lor_gauss_conv]
[numerical_lor_ymin_on_ymax #0.0001]
[one_on_x_conv E]...
[pk_xo E]
[push_peak]...

Keywords 219

219 Keywords

[pv_lor E pv_fwhm E]
[spv_h1 E spv_h2 E spv_l1 E spv_l2 E]
[stacked_hats_conv [whole_hat E [hat_height E]]...[half_hat E [hat_height E]]...]...
[th2_offset E]...
[user_defined_convolution E min E max E]...
[WPPM_ft_conv E]...

Tcomm_2
[f0_f1_f11_atom]...
[lam [ymin_on_ymax #] [no_th_dependence] [Lam !E] [calculate_Lam]]
[scale_pks E]...
[scale_phase_X E]
[prm|local E [min !E][max !E][del !E][update !E][stop_when !E][val_on_continue !E]]...
[existing_prm E]...
[penalty !E]...
[out $file [append]]...

Tout_record

Tphase_1
[atom_out $file [append]]...

Tout_record
[auto_scale !E]
[del_approx !E]
[phase_name $phase_name]
[phase_out $file [append]]...
[phase_out_X $file [append]] …
[brindley_spherical_r_cm !E]
[r_bragg #]
[remove_phase !E]
[scale E]

Tphase_2
[peak_buffer_step E [report_on]]
[peak_type $type]
[numerical_area E]

Tstr_details
[append_cartesian] [append_fractional [in_str_format]]
[append_bond_lengths [consider_lattice_parameters]]
[atomic_interaction N E] | [ai_anti_bump N]...
[box_interaction [from_N #] [to_N #] [no_self_interaction] $site_1 $site_2 N E]...
[fourier_map !E]
[grs_interaction [from_N #][to_N #][no_self_interaction] $site_1 $site_2 qi # qj # N E]...
[hkl_plane $hkl]...
[no_f11]
[normalize_FCs]
[occ_merge $sites [occ_merge_radius !E]]...
[p1_fractional_to_file $file] [in_str_format]...

Keywords 220

220 Keywords

[site $site]...
[adps] [u11 E] [u22 E] [u33 E] [u12 E] [u13 E] [u23 E]
Tmin_r_max_r

[sites_distance N] | [sites_angle N] | [sites_flatten N [sites_flatten_tol !E]]...
[sites_geometry N]...
[siv_s1_s2 # #]
[report_on_str]
[view_structure]

Thkl_lat
[a E] [b E] [c E] [al E] [be E] [ga E]
[normals_plot !E]...
[phase_penalties $sites N [hkl_Re_Im #h #k #l #Re #Im]...]...
[spherical_harmonics_hkl $name]...
[str_hkl_angle N h k l]...
[omit_hkls !E]

Tout_record
[out_record]...

Tmin_r_max_r
[min_r #] [max_r #]

Tspace_group
[space_group $symbol]

Miscellanous
[aberration_range_change_allowed !E]
[default_I_attributes !E]
load, move_to, for

21.2 ... Alphabetical listing of keywords

[a E] [b E] [c E] [al E] [be E] [ga E]

Lattice parameters in Å and lattice angles in degrees.

[adps] [u11 E] [u22 E] [u33 E] [u12 E] [u13 E] [u23 E]

adps generates the unn atomic displacement parameters with considerations made for
special positions (see TEST_EXAMPLES\SINGLE-CRYSTAL\AE14-ADPS.INP). On termination
of refinement the adps keyword is replaced with the unn parameters; see example AE1-
ADPS.INP. Instead of using the adps keyword the unn parameters can be manually entered.
The unn matrix can be kept positive definite with the site dependent macro of
ADPs_Keep_PD; this can stabilize refinement. The ADPs_Keep_PD macro can be used after
the unn parameters are created. For determining adp constraints the 3x3 eigen value de-
termination routine of Kopp (2006) has been used.

Keywords 221

221 Keywords

[amorphous_phase]

In the calculation of degree_of_crystallinity, phases with amorphous_phase are treated as
amorphous in the calculation.

[A_matrix] [C_matrix] [A_matrix_normalized] [C_matrix_normalized]

Generates the un-normalized and normalized A and correlation matrices. If do_errors is
defined then C_matrix_normalized is automatically generated and appenedd to the OUT
file.

[append_cartesian] [append_fractional [in_str_format]]

Appends site fractional coordinates in Cartesian or fractional coordinates respectively to
the *.OUT file at the end of a refinement. For the case of append_fractional, in_str_format
produces output in INP format.

[append_bond_lengths [consider_lattice_parameters]]

Appends bond lengths the *.OUT file at the end of refinement. A number corresponding to
equivalent positions is appended to site names. consider_lattice_parameters includes lat-
tice parameter errors in the calculation of bond length and bond angle errors. An example
of bond lengths output is as follows:

Y1:0 O1:0 2.23143
 O2:0 2.23143 88.083
 O3:0 2.28045 109.799 99.928

The first line gives the distance between the sites Y1 and O2. The first number in the second
line gives the distance between sites Y1 and O2. The third number of 88.083 gives the angle
between the vectors Y1 to O1 and Y1 to O2. The first number on the third line contains the
distance between sites Y1 and O3. The second number in the third line contains the angle
between the vectors Y1 to O3 and Y1 to O2. The third number in line three contains the
angle between the vectors Y1 to O3 and Y1 to O1. Bond lengths, therefore, correspond to
the first number in each line and bond angles start from the second number. The numbers
after the site name and after the ‘:’ character corresponds to the site equivalent position as
found in the *.SG space group files found in the SG directory

[atomic_interaction N E] | [ai_anti_bump N]...
ai_sites_1 $sites_1 ai_sites_2 $sites_2
[ai_no_self_interation]
[ai_closest_N !E]
[ai_radius !E]
[ai_exclude_eq_0]
[ai_only_eq_0]

Defines an atomic interaction with the name N between sites identified by $site_1 and
$site_2. For atomic_interaction, E is the site interaction equation that can be a function of
R and Ri. R returns the distance in Å between two atoms; these distances are updated when
dependent fractional atomic coordinates are modified. The name of the

Keywords 222

222 Keywords

atomic_interaction N can be used in equations including penalty equations. For
ai_anti_bump, an internal c++ anti-bump interaction equation is used. For anti-bumping
only, ai_anti_bump is faster than using atomic_interaction. The AI_Anti_Bump macro uses
ai_anti_bump. no_self_interaction prevents interactions between equivalent positions of a
site. This is useful when a general position is used to describe a special position.

ai_closest_N: interactions between $sites_1 and $sites_2 are sorted by distance and only
the first ai_closest_N number of interactions are considered.

ai_radius: only the interactions between $sites_1 and $sites_2 that are within the distance
ai_radius is considered.

When ai_radius and ai_closest_N are both defined then interactions from both sets of cor-
responding interaction are considered.

ai_exclude_eq_0: only interactions that is not the first equivalent positions in $sites_2 are
considered. For example, in the following:

atomic_interaction ...
ai_exclude_eq_0
ai_sites_1 Pb
ai_sites_2 “O1 O2”

the following interactions are considered:

Pb:0 and O1:n (n  0)
Pb:0 and O2:n (n  0)

where the number after the ‘:’ character corresponds to the equivalent positions of the
sites. ai_only_eq_0: only interactions between equivalent positions 0 are considered.

Functions

The atomic_interaction equation can be a function of the following functions:

AI_R(#ri): Returns the distance between the current site and the atom defined with Ri=#ri.

AI_R_CM: A function of no arguments that returns the geometric center of the current atom
and the atoms defined in $sites_2.

AI_Flatten(#toll): A function that returns the sum of distances of the current atom and those
defined in $sites_2 to an approximate plane of best fit. The plane of best fit is constructed
such that the sum of the perpendicular distances to the current atom plus those defined in
$sites_2 are at the minimum

AI_Cos_Angle(#ri1, #ri2): Returns the Cos of the angle between the atom define as Ri=#ri1,
the current atom and the atom defined as Ri=#ri2.

AI_Angle(#ri1, #ri2) : Similar-to AI_Cos_Angle except that the value returned is the angle in
degrees.

Keywords 223

223 Keywords

Examples BENZENE_AI1.INP, BENZENE_AI2.INP and BENZENE_AI3.INP demonstrates the
use of the atomic_interation functions. atomic_interaction’s are used to apply geometric
restraints. For example, anti-bumping between molecules for the first ten iterations of a
refinement cycle can be formulated as follows:

atomic_interaction ai1 = If(R < 3, (R-3)^2, 0);
ai_exclude_eq_0
ai_sites_1 C*
ai_sites_2 C*
ai_radius 3

penalty = If(Cycle_Iter < 10, ai1, 0);

[atom_out $file [append]]...

Used for writing site dependent details to file. See out for a description of out_record. The
Out_CIF_STR macro uses atom_out

[axial_conv]...
filament_length E sample_length E receiving_slit_length E
[primary_soller_angle E]
[secondary_soller_angle E]
[axial_n_beta !E]

Full axial divergence model using the method of Cheary & Coelho (1998b). filament_length,
sample_length and receiving_slit_length define the lengths of the tube-filament, sample
and receiving slit in the axial plane in mm. primary_soller_angle and secondary_soller_an-
gle define Soller slit angles in degrees. axial_n_beta defines the number of rays emanating
from a point X-ray source in the axial plane. Larger values for axial_n_beta increases both
accuracy and calculation time. The Full_Axial_Model macro simplifies the use of ax-
ial_conv.

[bkg [@] # # # ...]

Defines a Chebyshev polynomial where the number of coefficients is equal to the number
of numeric values appearing after bkg.

[box_interaction [from_N #] [to_N #] [no_self_interaction] $site_1 $site_2 N E]...

Defines a site interaction with the name N between sites identified by $site_1 and $site_2.
E represents the site interaction equation which can be a function of R and Ri. R returns the
distance in Å between two atoms; these distances are updated when dependent fractional
atomic coordinates are modified. The name of the box_interaction N can be used in equa-
tions including penalty equations. When either from_N or to_N are defined, the interactions
between $site_1 and $site_2 are sorted by distance and only the interactions between the
from_N and to_N are considered. no_self_interaction prevents any interactions between
equivalent positions of the same site. This is useful when a general position is used to de-
scribe a special position. For example, the following could be used to iterate from the near-
est atom to the third atom from a site called Si1:

str

Keywords 224

224 Keywords

site Si1 ...
site O1 ...
site O2 ...
site O3 ...
box_interaction Si1 O* to_N 2 !si1o = (R-2)^2;
penalty = !si1o;

In this example the nearest three oxygen atoms are soft constrained to a distance of 2 Å by
use of the penalty function. Counting starts at zero and thus to_N is set to 2 to iterate up to
the third nearest atom.

The wild card character ‘*’ used in “O*” means that sites with names starting with ‘O’ are
considered. In addition to using the wild card character, the site names can be explicitly
written within double quotation marks, for example:

box_interaction Si1 “O1 O2 O3” to_N 3 etc...

Interactions between Si1 and the three oxygen atoms O1, O2, O3 may not all be included,
for example, if Si1 has as its nearest neighbours the following:

Si1-O1,1 at a distance of 1.0 Å

Si1-O2,3 at a distance of 1.1 Å

Si1-O2,1 at a distance of 1.2 Å

Si1-O1,2 at a distance of 1.3 Å

then two equivalent positions of site O1 and two equivalent positions of O2 would be in-
cluded in the interaction equation; thus, interactions between Si1-O3 are not considered.
To ensure that each of the three oxygens has Si1 included in an interaction equation then
the following could be used:

box_interaction “O1 O2 O3” Si1 to_N 0 etc...

Thus, the order of $site_1 and $site_2 is important when either from_N or to_N is defined.
The reserved parameters Ri and Break can also be used in interaction equations when ei-
ther from_N or to_N is defined. Ri returns the index of the current interaction being operated
on with the first interaction starting at Ri = 0.

box_interaction is used for example by the Anti_Bump macro.

[brindley_spherical_r_cm !E]

Applies the Brindley correction for spherical particles. The macro Apply_Brindley_Spheri-
cal_R_PD is defined as:

macro Apply_Brindley_Spherical_R_PD(& R, & PD) {
brindley_spherical_r_cm = R PD;

}

R is the radius of the particle in cm and PD is the packing density. Here’s an example:

xdd ...

Keywords 225

225 Keywords

str
Apply_Brindley_Spherical_R_PD(R, PD)
MVW(0,0,0)

str
Apply_Brindley_Spherical_R_PD(R, PD)
MVW(0,0,0)

Use of phase_MAC or MVW is optional as they are created when needed. The Brindley cor-
rection can be applied to all phases including xo_Is. In the case of phases that do not have
lattice parameters or sites, definitions of cell_volume, cell_mass and phase_MAC is re-
quired for the Brindley correction to work and for weight_percent(s) to be calculated. This
allows for the incorporation of non-structural phases in quantitative analysis; for example,
the following is valid as necessary information have been included:

xo_Is
Apply_Brindley_Spherical_R_PD(0.002, 0.6)
MVW(654, 230, 0)
phase_MAC 200

[capillary_diameter_mm E]...
capillary_u_cm_inv E
[capillary_convergent_beam] [capillary_divergent_beam] [capillary_parallel_beam]
[capillary_focal_length_mm E]
[capillary_xy_n #]

Examples for the capillary convolution (Coelho & Rowles, 2017) are LAB6-STOE.INP and
LAB6-D8.INP as found in the directory TEST_EXAMPLES\CAPILLARY. If using a str phase then
capillary_u_cm_inv can be set to the calculated linear absorption coefficient multiplied by
a packing density, for example:

prm packing_density 0.31208
capillary_diameter_mm @ 0.57313

capillary_u_cm_inv
= Get(mixture_MAC) Get(mixture_density_g_on_cm3) packing_density;

capillary_focal_length_mm @ 197.89657
capillary_convergent_beam

If not defined, capillary_focal_length_mm defaults to the diffractometer radius Rs.

[circles_conv E]...

Defines m in the convolution function:

(1 − m / ½) for  = 0 to m

that is convoluted into phase peaks. m can be greater than or less than zero. circles_conv
is used for example by the Simple_Axial_Model macro.

Keywords 226

226 Keywords

[cloud $sites]...
[cloud_population !E]
[cloud_save $file]
[cloud_save_xyzs $file]
[cloud_load_xyzs $file]

[cloud_load_xyzs_omit_rwps !E]
[cloud_formation_omit_rwps !E]
[cloud_try_accept !E]
[cloud_gauss_fwhm !E]
[cloud_extract_and_save_xyzs $file]

[cloud_number_to_extract !E]
[cloud_atomic_separation !E]

cloud allows for the tracking of atoms defined in $sites in three dimensions. It can be useful
for determining the average positions of heavy atoms or rigid bodies during refinement cy-
cles. For example, a dummy atom, “site X1” say, can be placed at the center of a benzene
ring and then tracked as follows:

continue_after_convergence
...
cloud “X1”

cloud_population 100
cloud_save SOME_FILE.CLD

On termination of refinement the CLD file is saved; it can be viewed using the rigid body
editor of the GUI; see examples AE14-12.INP for a cloud example. cloud_population is the
maximum number of population members. Each population member comprises the frac-
tional coordinates of $sites and an associated Rwp value.

cloud_save_xyzs saves a cloud population to file.

cloud_load_xyzs loads and reuses previously saved populations.
cloud_load_xyzs_omit_rwps can be used to exclude population membes whilst loading; it
can be a function of Get(Cloud_Rwp) where Cloud_Rwp is the associated Rwp of a popu-
lation member.

cloud_formation_omit_rwps can be used to limit population membes in the formation of
CLD files; it can be a function of Get(Cloud_Rwp).

cloud_try_accept accepts population members if it evaluates to non-zero and if the best
Rwp since the last acceptance is less than a present population member or if the number
of members is less than cloud_population. If the number of population members equals
cloud_population then the population member with the lowest Rwp is discarded.
cloud_try_accept is evaluated at the end of each refinement cycle; it default value is true.
Here’s are some examples:

Keywords 227

227 Keywords

cloud_try_accept = And(Cycle, Mod(Cycle, 50);
cloud_try_accept = T == 10;

cloud_gauss_fwhm is the full width at half maximum of a three-dimensional Gaussian that
is used to fill the cloud.

cloud_extract_and_save_xyzs searches the three-dimensional cloud for high densities and
extracts xyz positions; these are then saved to $file. cloud_number_to_extract defines the
number of positions to extract and cloud_atomic_separation limits the atomic separation
during the extraction. The actual number of positions extracted may be less than
cloud_number_to_extract depending on the cloud.

[conserve_memory]

Deletes temporary arrays used in intermediate calculations as often as possible; memory
savings of up to 70% can be expected on some problems with subsequent lengthening of
execution times by up to 40%. When approximate_A is used on dense matrices then con-
serve_memory can reduce memory usage by up to 90%.

[convolution_step #1]

An integer defining the number of calculated data points per measured data point. Increas-
ing convolution_step when the measurement step is large improves convolution accuracy.
Only when the measurement step is greater than about 0.03 degrees 2Th or when high pre-
cision is required is it necessary to increase convolution_step.

[default_I_attributes E]

Changes the attributes of the I parameter, for example:

xo_Is... default_I_attributes 0 min 0.001 val_on_continue 1

Useful when randomizing lattice parameters during Le Bail refinements with continue_af-
ter_convergence.

[degree_of_crystallinity #]
[crystalline_area #]
[amorphous_area #]

Reports on the degree of crystallinity which is calculated as follows:

100 * Get(crystalline_area) / (Get(crystalline_area) + Get(amorphous_area))

crystalline_area and amorphous_area corresponds to the sum of the numerical areas un-
der the crystalline and amorphous phases respectively. Phases with amorphous_phase
are treated as amorphous in the calculation.

Keywords 228

228 Keywords

[d_Is]...
[d E I E]...

Defines a phase type that uses d-spacing values for generating peak positions. d corre-
sponds to the peak position in d-space in Å and I is the intensity parameter before applying
any scale_pks equations.

[d_spacing_to_energy_in_eV_for_f1_f11 !E]

Used for refining on energy dispersive data (see example ED_SI_STR.INP). Can be a function
of the reserved parameter D_spacing. f' and f" (see section 20.12) values used corresponds
to energies given by d_spacing_to_energy_in_eV_for_f1_f11. For example:

‘ E(eV) = 10^5 / (8.065541 Lambda(A))
prm !detector_angle_in_radians = 7.77 Deg_on_2;
prm wavelength = 2 D_spacing Sin(detector_angle_in_radians);
prm energy_in_eV = 10^5 / (8.065541 wavelength);
pk_xo = 10^-3 energy_in_eV + zero;
d_spacing_to_energy_in_eV_for_f1_f11 = energy_in_eV;

[exclude #x1 #x2]...

Excludes an x-axis region between #x1 and #x2. The macro Exclude simplifies usage; see
example CEO2.INP.

[exp_conv_const E [exp_limit E]]...

Defines m in the aberration function:

A = Exp(Ln(0.001)   m) for  = 0 to exp_limit

that is convoluted into phase peaks. Used by the Absorption and Absorption_With_Sam-
ple_Thickness_mm macros. The  range of A is:

(0 <  < limit) for m < 0, or, (limit <  < 0) for m > 0

where A(limit) = 0.001. Alternatively, limit can be defined using exp_limit.

[extra_X_left !E] [extra_X_right !E]

Determines the extra x-axis range for hkl generation. For TOF data extra_X_left is typically
used. For x-ray data then extra_X_right is typically used. Both defaults to 0.5.

[file_name_for_best_solutions $file]

Appends INP file details to $file during refinement with independent parameter values up-
dated. The operation is performed when convergence results in the best Rwp.

[force_positive_fwhm]

Forces Lorentzian and/or Gaussian FWHM values to be positive. The following INP snippets
are equivalent:

Keywords 229

229 Keywords

force_positive_fwhm
xdd ...

str ...
lor_fwhm = Rand(-1,1);

xdd ...

str ...
lor_fwhm = Abs(Rand(-1.1,));

[fit_obj E [min_X !E] [max_X !E]]...
[fo_transform_X !E]
[fit_obj_phase !E]

Defines a User defined function added to Ycalc, see example PVS.INP. fit_obj’s can be a
function of X. min_X and max_X define the x-axis range of the fit_obj; if min_X is omitted
then the fit_obj is calculated from the start of the x-axis; similarly, if max_X is omitted then
the fit_obj is calculated to the end of the x-axis. fo_transform_X is a dependent of fit_obj
and it can be used to transform X used within the fit_obj.

[fourier_map !E]
[fourier_map_formula !E]
[extend_calculated_sphere_to !E]
[min_grid_spacing !E]
[correct_for_atomic_scattering_factors !E]
[f_atom_type $type f_atom_quantity !E]...

If fourier_map is non-zero then a Fourier map is calculated on refinement termination and
shown in the OpenGL window; maps can be calculated for x-ray or neutron single crystal
or powder data, see test examples FOURIER-MAP-AE14.INP and FOURIER-MAP-CIME.INP.
The type of map is determined by fourier_map_formula which can be a function of the re-
served parameter names Fcalc, Fobs and D_spacing; here are some examples:

fourier_map_formula = Fobs; ‘ The default
fourier_map_formula = 2 Fobs - Fcalc;

For single crystal data, Fobs corresponds to the observed structure moduli; powder data
Fobs is calculated from the Rietveld decomposition formula. Structure factor phases are
determined from Fcalc. Reflections that are missing from within the Ewald sphere are in-
cluded with Fobs set to Fcalc. If extend_calculated_sphere_to is defined, then the Ewald
sphere is extended. scale_pks definitions are removed from Fobs. If scale_pks evaluates
to zero for a particular reflection, then Fobs is set to Fcalc; the number of Fobs reflections
set to Fcalc is reported on.

[gauss_fwhm E]...

Defines the FWHM of a Gaussian function convoluted into phase peaks; see CS_G and
Strain_G macros.

[hkl_plane $hkl]...

Used by the OpenGL viewer to display hkl planes, see the CEO2.STR file in the RIGID direc-
tory. Here are some examples:

Keywords 230

230 Keywords

str ...
hkl_plane 1 1 1
hkl_plane “2 -2 0”

[grs_interaction [from_N #] [to_N #] [no_self_interaction] $site_1 $site_2 qi # qj # N E]...

Defines a GRS interaction with the name N between sites identified by $site_1 and $site_2.
E represents the GRS interaction equation that can be a function of R; R returns the dis-
tance in Å between two atoms; these distances are updated when dependent fractional
atomic coordinates are modified. The name N of the grs_interaction can be used in equa-
tions including penalty equations. When either from_N or to_N are defined, the interactions
between $site_1 and $site_2 are sorted by distance and only the interactions between the
from_N and to_N are considered. no_self_interaction prevents any interactions between
equivalent positions of the same site. This is useful when a general position is used to de-
scribe a special position. qi and qj corresponds to the valence charges used to calculate
the Coulomb sum for the $site_1 and $site_2 sites respectively. grs_interaction is typically
used for applying electrostatic restraints in inorganic materials. The GRS_Interaction
macro simplifies the use of grs_interaction.

[hat E [num_hats #1]]...

Defines the x-axis extent of an impulse function that is convoluted into phase peaks.
num_hats correspond to the number of hats to be convoluted. hat is used for example by
the Slit_Width and Specimen_Tilt macros.

[hkl_Is]...
[lp_search !E]
[I_parameter_names_have_hkl $start_of_parameter_name]
[hkl_m_d_th2 # # # # # # I E]...

Defines a phase type that uses hkls for generating peak positions. lp_search uses an index-
ing algorithm that is independent of d-spacing extraction (bCoelho, 2017); see LP-SEARCH-
PBSO4.INP. lp_search minimizes on a figure of merit function that gives a measure of cor-
rectness for a particular set of lattice parameters. The method avoids difficulties associ-
ated with extracting d-spacings from complex patterns comprising heavily overlapped
lines; the primary difficulty being that of ascertaining the number of lines present. I_param-
eter_names_have_hkl assigns names to generated Intensity parameters that start with
$start_of_parameter_name and end with the corresponding hkl. The numbers after
hkl_m_d_th2 define h k l m d and 2 values, where

h, k, l : Miller indices
m : multiplicity.
d and th2 : d and 2 values.
I : Peak intensity parameter before applying any scale_pks.

If no hkl_m_d_th2 keywords are defined, then hkls are generated using the space group.
Generated hkl_m_d_th2 details are placed after the space_group keyword on refinement
termination. Intensity parameters are given an initial starting value of 1. If lebail is not de-
fined, then the intensity parameters are given the code of @. For example, the following:

Keywords 231

231 Keywords

xdd quartz.xdd
...
hkl_Is
 Hexagonal(4.91459, 5.40603)
 space_group P_31_2_1

generates in the OUT file the following:

xdd quartz.xdd
...
hkl_Is

Hexagonal(4.91459, 5.40603)
space_group P_31_2_1
load hkl_m_d_th2 I {

1 0 0 6 4.25635 20.85324 @ 3147.83321
1 0 1 6 3.34470 26.62997 @ 8559.23955
1 0 -1 6 3.34470 26.62997 @ 8559.23955
...

}

The Create_hklm_d_Th2_Ip_file macro creates an hkl file listing in the "load hkl_m_d_th2 I"
format as shown above. Even though the structure would have no sites, weight_percent
can still be used; it uses whatever value is defined by cell_mass to calculate weight_per-
cent.

[inp_text $name] …
[inp_text_insert $name { … }]…

inp_text provides a means of defining INP text at one place in a file and having that text
inserted at another place in the INP file, or in an #include file, using inp_text_insert. The
inp_text is updated on refinement termination. inp_text is very useful for simplifying com-
plicated INP files where placing control parameters at the top of the file is of benefit; see
test_example INP-TEXT.INP. An example is as follows:

inp_text back_ground {
bkg @ 17.365576` 14.5555883` 14.038067`

}

xdd …
inp_text_insert back_ground

More than one inp_text can be of the same name; in such cases inp_text_insert will use the
most recent inp_text.

[iters #]

The maximum number of refinement iterations, default is 109.

[lam [ymin_on_ymax #] [no_th_dependence] [Lam !E] [calculate_Lam]]
[la E lo E [lh E] | [lg E] [lo_ref]]...

Defines an emission profile (see section 5) where each la determines an emission profile
line, where:

Keywords 232

232 Keywords

la: Area under the emission profile line
lo: Wavelength in Å of the emission profile line
lh: HW in mÅ of a Lorentzian convoluted into the emission profile line.
lg: HW in mÅ of a Gaussian convoluted into the emission profile line.

ymin_on_ymax determines the x-axis extent to which an emission profile line is calculated;
default value is 0.001. no_th_dependence defines an emission profile that is 2 independ-
ent; it allows use of non-X-ray data or fitting to negative 2 values. By default, the program
calculates d-spacings using the wavelength of the emission profile line with the highest la
parameter. However, if la parameters are refined the reference wavelength could change
causing confusion. To avoid this lo_ref can be used to identify the reference wavelength.

Lam defines the value to be used for the reserved parameter Lam. When Lam is not defined
then the reserved parameter Lam is defined as the wavelength of the emission profile line
with the largest la value. Note that Lam is used to determine the Bragg angle.

calculate_Lam calculates Lam such that it corresponds to the wavelength at the peak of
the emission profile. Lam needs to be set to an approximate value corresponding to the
peak of the emission profile.

[lor_fwhm E]...

Defines the FWHM of a Lorentzian that is convoluted into phase peaks; see for example the
CS_L and Strain_L macros.

[lpsd_th2_angular_range_degrees E]...
lpsd_equitorial_divergence_degrees E
lpsd_equitorial_sample_length_mm E

Convolutes the aberration for a Linear Position Sensitive Detector (Cheary & Coelho, 1994)
into phase peaks. lpsd_th2_angular_range_degrees correspond to the angular range of the
LPSD in 2Th degrees. lpsd_equitorial_divergence_degrees is the equatorial divergence in
degrees of the primary beam and lpsd_equitorial_sample_length_mm the length of the
sample in the equatorial plane. lpsd_th2_angular_range_degrees corrects peak shapes, in-
tensities and 2Th shifts, see example LPSD-SIMULATED.INP.

[min_r #] [max_r #]

Defines the minimum and maximum radii for calculating bond lengths, defaults are 0 and
3.2 Å respectively.

[neutron_data]

Signals the use of neutron atomic scattering lengths. Scattering lengths for isotopes can
be used by placing the isotope name after “occ” as in:

occ 6Li 1
occ 36Ar 1

The scattering lengths data, contained in the file NEUTSCAT.CPP.

Keywords 233

233 Keywords

Constant wavelength neutron diffraction requires a Lorentz correction using the Lo-
rentz_Factor macro (defined in TOPAS.INC); it is defined as follows:

scale_pks = 1 / (Sin(Th)^2 Cos(Th));

[no_LIMIT_warnings]

Suppresses LIMIT_MIN and LIMIT_MAX warnings.

[normalize_FCs]

Normalizes site fractional coordinates. Normalization does not occur for coordinates with
min/max limits, is part of a rigid body or is part of a site constraint of any kind.

[numerical_area E]

Returns the numerically calculated area under the phase.

[num_cycles #]

Determines the number of cycles to process when continue_after_convergence is defined.
The number of iterations, defined using iters, is still adhered to. Thus, to set number of
cycles to 100 then using something like:

continue_after_convergence
iters 1000000000
num_cycles 100

[occ_merge $sites [occ_merge_radius !E]]...

Rewrites site occupancies of sites defined in $sites in terms of their fractional atomic co-
ordinates (Favre-Nicolin and R. Cerny 2002). This is useful during structure solution for
merging rigid bodies such as octahedra. It is also useful for identifying special positions as
seen in the example PBSO4-DECOMPOSE.INP. In the present implementation $sites are
thought of as spheres with a radius occ_merge_radius. When two atoms approach with a
distance less than the sum of their respective occ_merge_radius’s then the spheres inter-
sect. The occupancies of the sites, occ_xyz, become:

occ_xyz = 1 / (1 + Intersecting_fractional_volumes)

In this way any number of sites can be merged. Sites appearing in $sites cannot have their
occupancies refined. On termination of refinement the occ parameter values are updated
with their corresponding occ_xyz.

[omit_hkls !E]

Allows for the filtering of hkls using the reserved parameter names of H, K, L and D_spac-
ing. More than one omit_hkls can be defined, for example:

omit_hkls = If(And(H==0, K==0), 1, 0);

Keywords 234

234 Keywords

omit_hkls = And(H==0, K==1);
omit_hkls = D_spacing < 1;

[one_on_x_conv E]...

Defines m in the convolution function:

(4 m ) −½ for  = 0 to m

that is convoluted into phase peaks. m can be greater than or less than zero, see for exam-
ple the Divergence macro.

[out_A_matrix $file]
[A_matrix_prm_filter $filter]

Outputs the least squares A matrix to the file $file; used in the macro Out_for_cf. Output
can be limited by using A_matrix_prm_filter, here’s an example for outputting A matrix ele-
ments corresponding to parameters with names starting with ‘q’:

out_A_matrix file.a A_matrix_prm_filter q*

[out $file [append]]...
[out_record]

[out_eqn !E]
[out_fmt $c_fmt_string]
[out_fmt_err $c_fmt_string]...

Used for writing parameter details to a file. The details are appended to $file when append
is defined. out_eqn defines the equation or parameter to be written to $file using the
out_fmt. $c_fmt_string describes a format string in c syntax containing a single format
specified for a double precision number. out_fmt_err defines the $c_fmt_string used for
formatting the error of eqn. Both out_fmt and out_fmt_err requires an out_eqn definition.
out_fmt can be used without out_eqn for writing strings. The order of out_fmt and
out_fmt_err determines which is written to file first. The following illustrates the use of out
using the Out macros (see OUT-1.INP):

xdd ...
out "sample output.txt" append
str ...

CS_L(cs_l, 1000)
Out_String("\tCrystallite Size Results:\n")
Out_String("\t=========================\n")
Out(cs_l, "\tCrystallite Size (nm):\t%11.5f",
 "\tError in Crystallite Size:\t%11.5f\n")

[out_rwp $file]

Outputs a list of Rwp values encountered during refinement to the file $file in XDD format.

Keywords 235

235 Keywords

[out_prm_vals_per_iteration $file [append]]... | [out_prm_vals_on_convergence $file [ap-
pend]]...

[out_prm_vals_filter $filter]
[out_prm_vals_dependents_filter $filter_dependents]

Outputs refined independent parameter values per iteration or on convergence into the file
$file. out_prm_vals_filter can be used to filter the parameters; $fliter can contain the wild
card character ’*’ and the negation character ’!’, for example:

out_prm_vals_per_iteration PRM_VALS.TXT out_prm_vals_filter "* !u*"

More than one out_prm_vals_per_iteration/out_prm_vals_on_convergence can be defined
for outputting different parameters into different files depending on the corresponding
out_prm_vals_filter. out_prm_vals_dependents_filter allows dependent parameters to be
outputted according to $filter_dependents.

[out_prm_vals_on_end $file [append]]...

Allows for output only at the end of refinement, for example:

str…
prm wtp = Get(weight_percent);

out_prm_vals_on_end aac2.txt append
out_prm_vals_filter wtp
out_prm_vals_dependents_filter wtp

The following example shows how to add items to the out_prm_vals_on_end file.

#list Files { file1.xy file2.xy }
num_runs #list_n Files
do_errors
out_prm_vals_on_end results.txt #if (Run_Number > 0) append #endif
xdd Files(Run_Number)

str…
out results.txt append

load out_record out_fmt out_eqn {
"%d " = Run_Number;
" %s " = Files(Run_Number);
}

The above will output the following into the file RESULTS.TXT.

Cycle Iter Rwp second_soll1FCF42E6640_ Err bkg1FCF3E90F18 Err ...
 0 7 7.026593e+00 7.437574e+00 3.511447e-02 1.208843e+01 ...
 0 file1.xy
Cycle Iter Rwp second_soll1FCF42E6640_ Err bkg1FCF3E90F18 Err ...
 0 7 7.026593e+00 7.437574e+00 3.511447e-02 1.208843e+01 ...
 1 file2.xy

[p1_fractional_to_file $file] [in_str_format]

Keywords 236

236 Keywords

Structure dependent. Saves atomic positions corresponding to space group P1 to the file
$file. The original space group can be any space group. If in_str_format is defined, then the
structural data is saved in INP format.

[peak_type $type]
[pv_lor E pv_fwhm E]
[h1 E h2 E m1 E m2 E]
[spv_h1 E spv_h2 E spv_l1 E spv_l2 E]

Sets the peak type for a phase, see section 5. The following peak_type’s are available:

Peak type $type Parameters

Fundamental
Parameters

fp

Pseudo-Voigt pv pv_lor: the Lorentzian fraction of the peak profile(s).
pv_fwhm: the FWHM of the peak profile(s).

Split-PearsonVII spvii The sum of h1 and h2 gives the FWHM of the composite
peak. m1, m2 are the PearsonVII exponents of the left and

right composite peak.

Split-PseudoVoigt spv The sum of spv_h1 and spv_h2 gives the full width at half
maximum of the composite peak. spv_l1, spv_l2 are the left

and right Lorentzian fractions.

[peak_buffer_step E [report_on]]

Peaks shapes typically change in a gradual manner over a short 2 range; a new peak
shape, therefore, is calculated only if the position of the last peak shape calculated is more
than the distance defined by peak_buffer_step. Various stretching and interpolation pro-
cedures are used to calculate in-between peaks, see also section 5.4. The default setting
is as follows:

peak_buffer_step = 500*Peak_Calculation_Step.

When the reserved parameter names of H, K, L, M, or parameter names associated with
sh_Cij_prm and hkl_angle, are used in peak convolution equations, then irregular peak
shapes are possible over short 2 ranges. In such cases, separate peak shapes are calcu-
lated for each peak irrespective of peak_buffer_step. report_on displays the number of
peaks in the peaks buffer.

A value of zero for peak_buffer_step forces the calculation of a separate peak shape for
each peak.

[phase_out $file [append]]...

Used for writing phase dependent details to file. See out for a description of out_record.
The Create_hklm_d_Th2_Ip_file uses phase_out.

[phase_out_X $file [append]]…

Keywords 237

237 Keywords

Phase dependent keyword that writes phase Ycalc details to a file. The out_eqn can contain
reserved parameter names occurring in xdd_out as well as Get(phase_ycalc); for example:

phase_out_X Phase.txt load out_record out_fmt out_eqn {
" %9.0f" = Xi;
" %11.5f" = X;
" %11.5f" = Get(phase_ycalc);
" %11.5f" = Ycalc;
" %11.5f" = Yobs;
" %11.5f\n" = Get(weighting);

}

The x-axis extent of the output corresponds to the x-axis range of the phase. If con-
serve_memeory is used, then the message “phase_out_X: No data” is outputted.

[pk_xo E]

Applied to all phase types except for xo_Is phases; provides a mechanism for transforming
peak position to an x-axis position. For example, the peak position for neutron time-of-flight
data is typically calculated in time-of-flight space, tof, or,

tof = t0 + t1 dhkl + t2 dhkl2

where t0 and t1 and t2 are diffractometer constants. See examples TOF_BALZAR_SH1.INP
and TOF_BALZAR_BR1.INP.

[phase_name $phase_name]

The name given to a phase; used for reporting purposes.

[phase_penalties $sites N]...[hkl_Re_Im #h #k #l #Re #Im]...
[accumulate_phases_and_save_to_file $file]

[accumulate_phases_when !E]

phase_penalties for a single hkl is defined as follows:

𝑃𝑝ℎ𝑘𝑙 = {
0, 𝑖𝑓 

𝑠,ℎ𝑘𝑙
− 45° < 

𝑐
< 

𝑠,ℎ𝑘𝑙
+ 45°

𝑑 𝐼𝑐,ℎ𝑘𝑙
2 (

𝑠,ℎ𝑘𝑙
− 

𝑐,ℎ𝑘𝑙
) , 𝑖𝑓 

𝑐
< 

𝑠,ℎ𝑘𝑙
− 45°𝑜𝑟 

𝑐
> 

𝑠,ℎ𝑘𝑙
+ 45°

where s assigned phase, c = calculated phase, Ic = calculated intensity and d is the re-
flection d-spacing. The name N returns the sum of the phase_penalties and it can be used
in equations and in particular penalty equations. c is calculated from sites identified in
$sites.

#h, #k, #l are user defined hkls; they are used for formulating the phase penalties. #Re and
#Im are the real and imaginary parts of s. An example usage of phase penalties (see exam-
ples AE14-12.INP and AE5-AUTO.INP) is as follows:

penalty = pp1;

Keywords 238

238 Keywords

phase_penalties * pp1
load hkl_Re_Im {

0 1 2 1 0
1 0 -2 1 0
1 -2 -1 1 0

}

hkls chosen for phase penalties should comprise those that are of high intensity, large d-
spacing and isolated from other peaks to avoid peak overlap. Origin defining hkls are typi-
cally chosen.

accumulate_phases_and_save_to_file saves the average phases collected to $file. Phases
are collected when accumulate_phases_when evaluates to true; accumu-
late_phases_when defaults to true. Here’s an example use:

load temperature { 1 1 1 1 10 }
 move_to_the_next_temperature_regardless_of_the_change_in_rwp
accumulate_phases_and_save_to_file SOME_FILE.TXT

accumulate_phases_when = T == 10;

Here phases with the best Rwp since the last accumulation are accumulated when the
current temperature is 10.

[process_times]

Displays process times on termination of refinement.

[rand_xyz !E]

If continue_after_convergence is defined, then rand_xyz is executed at the end of a refine-
ment cycle. It adds the vector u to the site fractional coordinate, the direction of which is
random and the magnitude in Å is:

|u| = T rand_xyz

where T is the current temperature. To add a shift to an atom between 0 and 1 Å the follow-
ing could be used:

temperature 1
site... occ 1 C beq 1 rand_xyz = Rand(0,1);

Only fractional coordinates (x, y, z) that are independent parameters are considered.

[r_bragg #]

Reports on the R-Bragg value. R-Bragg is independent of hkl's and thus can be calculated
for all phase types that contain phase peaks.

Keywords 239

239 Keywords

[rebin_with_dx_of !E]
[rebin_start_x_at !E]

Rebins the observed data (and SigmaYobs if it exists), see example CLAY.INP. It can be a
function of the reserved parameter X as demonstrated in TOF_BANK2_1.INP. If re-
bin_with_dx_of evaluates to a constant, then the observed data is re-binned to equal x-axis
steps. For observed data that is of unequal x-axis steps then re-binning provides a means
of converting to equal x-axis steps. Some points about rebin_with_dx_of:

• It changes the data.

• It uses all data and uses it once.

• Errors are similar if the fit to the new data is similar.

• If a hat convolution is included in Ycalc then the fit is potentially the same.

rebin_with_dx_of creates a new x-axis with points determined by the rebin_with_dx_of
equation, or,

x[i+1] = x[i] + rebin_with_dx_of

The new x-axis can be at x-axis intervals that are unequal. The position of the first x[i] value
defaults to the start of the original x-axis; this can be changed using rebin_start_x_at. In-
tensities at the new x-axis are determined by the following integration:

Intensity at x[i] = Integrate Yobs from (x[i] + x[i-1])/2 to (x[i] + x[i+1])/2

Yobs is considered as line segments; integration is therefore simply the area under the line
segments. The integration implies convolution and rebin_with_dx_of can be thought of as
a resampling of the data. If rebin_with_dx_of is a constant, then the x-axis intervals are
equal, then the integration can be included in Ycalc using a hat function, or,

rebin_with_dx_of 0.02
hat 0.02

[Rp #] [Rs #]

Primary and secondary diffractometer radii in mm; defaults to 217mm.

[scale E]

Rietveld scale factor; can be applied to all phase types.

[scale_pks E]...

Scales phase peaks; the following defines a Lorentz-Polarisation correction:

scale_pks = (1 + Cos(c Deg)^2 Cos(2 Th)^2) / (Sin(Th)^2 Cos(Th));

See LP_Factor, Preferred_Orientation and Absorption_With_Sample_Thickness_mm_In-
tensity macros.

Keywords 240

240 Keywords

[seed [#]]

Initializes the random number generator with a seed based on the computer clock. To ini-
tialize the random number generator at the pre-processor stage then use #seed.

[site $site [x E] [y E] [z E]]...
[occ $atom E [beq E] [scale_occ E]]...
[num_posns #] [rand_xyz !E] [inter !E #]

Defines a site where $site is a User defined string used to identify the site. x, y, and z define
the fractional atomic coordinates, see also section 20.28. occ and beq defines the site oc-
cupancy factor and the equivalent isotropic temperature factor respectively. $atom corre-
sponds to a valid atom symbol or isotope contained in the file ATMSCAT.CPP for x-ray data
and NEUTSCAT.CPP for neutron_data. num_posns corresponds to the number of unique
equivalent position generated from the space group; it is updated on refinement termina-
tion. inter corresponds to the sum of all GRS interactions which are a function of the site.
The value of inter can represent the site electrostatic potential depending on the type of
GRS interactions defined. A site fully occupied by Calcium is written as:

site Al1 x 0 y 0 z 0.3521 occ Ca+2 1 beq 0.3

A site occupied by two cations is:

site Fe2 x 0.9283 y 0.25 z 0.9533 occ Fe+3 0.5 beq 0.25
 occ Al+3 0.5 beq 0.25

scale_occ is occ dependent and it scales occ. It and can be a function of H, K, L, D_spac-
ing, Xo and Th. The occ keyword remains single valued for QUANT purposes and thus can-
not be a function of H, K, L etc. The following is valid:

occ Pb+2 1
 prm q1 1 min 1e-6
 prm q2 1 min 1e-6
 prm q3 1 min 1e-6
 prm q4 1 min 1e-6
 scale_occ = q1 / D_spacing + 1 / (q2 H^2 + q3 K^2 + q4 L^2);

scale_occ is a child of occ, the keyword therefore needs to occur after the occ keyword.
The following two definitions will produce identical structure factors but different QUANT
results:

site Pb occ Pb+2 1 beq 1
site Pb occ Pb+2 0.5 beq 1 scale_occ 2

scale_occ works with magnetic data, neutron data, x-ray data etc. but not PDF data.

Symmetry: The user is responsible for obeying symmetry. If not working in P1 then the Mul-
tiplicities_Sum macro could be used. The spherical_harmonics_hkl keyword can also be
used, for example:

Keywords 241

241 Keywords

spherical_harmonics_hkl sh sh_order 6
site Pb occ Pb+2 1 beq 1

prm q 1 min 1e-6
scale_occ = q sh;

[sites_distance N] | [sites_angle N] | [sites_flatten N [sites_flatten_tol !E]]...
[site_to_restrain $site [#ep [#n1 #n2 #n3]]]...

When used in equations the name N of sites_distance and sites_angle returns the distance
in Å between two sites and angle in degrees between three sites respectively. The sites con-
sidered are defined by site_to_restrain. N can be used in penalty equations to restrain bond
lengths. N of sites_flatten returns a restraint term that decreases as the sites become co-
planar; it is defined as follows:

sites_flatten=
6

𝑛(𝑛 − 1)(𝑛 − 2)
∑ ∑ ∑ (|𝑏𝑖 x 𝑏𝑗 . 𝑏𝑘| − 𝑡𝑜𝑙)

2
, 𝑖𝑓 |𝑏𝑖 x 𝑏𝑗 . 𝑏𝑘| > 𝑡𝑜𝑙

𝑛

𝑘=𝑗+1

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

where tol corresponds to sites_flatten_tol, n corresponds to the number of sites defined by
site_to_restrain, b are Cartesian unit length vectors between the sites and the geometric
center of the sites.

#eq, #n1, #n2 and #n3 correspond to the site equivalent position and fractional offsets to
add to the sites. This is useful if the structure is already known and constraints are required,
for example, in the bond length output (see append_bond_lengths):

Zr1:0 O1:20 0 0 -1 2.08772
 O1:7 0 -1 0 2.08772 89.658
 O1:10 0 0 -1 2.08772 90.342 90.342
 O1:15 -1 0 0 2.08772 180.000 89.658 89.658
 O1:18 -1 0 0 2.08772 90.342 89.658 180.000 90.342

P1:0 O1:4 0 0 0 1.52473
 O1:8 0 0 0 1.52473 112.923
 O1:0 0 0 0 1.52473 112.923 112.923
 O2:0 0 0 0 1.59001 105.749 105.749 105.749

Example constraints using macros looks like:

Angle_Restrain(O1 P1 O1 8, 112, 112.92311, 0, 0.001)
Angle_Restrain(O1 18 -1 0 0 Zr1 O1 10 0 0 -1, 89, 89.65750, 0, 0.001)
Distance_Restrain(Zr1 O1 20 0 0 -1, 2.08, 2.08772, 0, 1)

BENZENE.INP demonstrates the use of the restraint macros Distance_Restrain, Angle_Re-
strain and Flatten. OpenGL viewing is recommended. Note, for more than ~6 sites then
sites_flatten becomes computationally expensive.

[sites_geometry $Name]...
[site_to_restrain $site [#ep [#n1 #n2 #n3]]]...

Defines a grouping of up to four sites; $Name is the name given to the grouping. The sites
that are part of the group is defined using site_to_restrain, for example:

Keywords 242

242 Keywords

sites_geometry some_name
load site_to_restrain { C1 C2 C3 C4 }

Three functions, Sites_Geometry_Distance($Name), Sites_Geometry_Angle($Name) and
Sites_Geometry_Dihedral_Angle($Name) can be used in equations to obtain the distance
between sites C1 and C2, the angle between C1-C2-C3 and the dihedral angle formed be-
tween the planes C1-C2-C3 and C2-C3-C4. The convention used are the same as for z-
matrices, see example SITES_GEOMETRY_1.INP.

If $Name contains only two sites, then only Sites_Geometry_Distance($Name) can be
used. Three sites defined additionally allows the use of Sites_Geometry_Angle($Name)
and four sites defined additionally allows the use of Sites_Geometry_Dihedral_An-
gle($Name).

Examples SITES_GEOMETRY_1.INP And SITES_GEOMETRY_2.INP demonstrates the use of
sites_geometry.

[siv_s1_s2 # #]

Defines the s1 and s2 integration limits for the spherical interaction volume of the GRS se-
ries.

[smooth #num_pts_left_right]

Performs a Savitzky-Golay smoothing on the observed data. The smoothing encompasses
(2 * #num_pts_left_right + 1) points.

[spherical_harmonics_hkl $name]...
[sh_Cij_prm $Yij E]...
[sh_alpha !E]
[sh_order #]

Defines a hkl dependent symmetrized spherical harmonics series (see section 20.30.1)
with a name of $name. When $name is used in equations, it returns the value of the asso-
ciated spherical-harmonics series.

sh_Cij_prm is the spherical harmonics coefficients which can be defined by the User, or
alternatively, if there are no coefficients defined, then the sh_Cij_prm parameters are gen-
erated. Only the coefficients allowed by the selection rules of the point group are generated
(Järvinen, 1993). At the end of refinement, the generated sh_Cij_prm parameters are ap-
pended to sh_order. This allows for control over the sh_Cij_prm parameters in subsequent
refinements. $Yij corresponds to valid symmetrized harmonics that has survived symme-
trisation. It is internally generated when there are no sh_Cij_prm parameters defined by the
User.

sh_alpha corresponds to the angle in degrees between the polar axis and the scattering
vector; sh_alpha defaults to zero degrees which is required for symmetric reflection as is
the case for Bragg-Brentano geometry.

Keywords 243

243 Keywords

sh_order corresponds to the order of the spherical harmonic series which are even num-
bers ranging from 2 to 8 for non-cubic and from 2 to 10 for cubic systems.

The PO_Spherical_Harmonics macro simplifies the use of spherical_harmonics_hkl.
CLAY.INP demonstrates the use of spherical_harmonics_hkl for describing anisotropic
peak shapes.

[stacked_hats_conv [whole_hat E [hat_height E]]...[half_hat E [hat_height E]...]...

Defines hat sizes for generating an aberration function comprising a summation of hats.
whole_hat defines a hat with an x-axis extent of whole_hat/2. half_hat defines a hat with
an x-axis range of half_hat to zero if half_hat<0; or zero to half_hat if half_hat> 0. hat_height
defines the height of the hat; it defaults to 1. stacked_hats is used for example to describe
tube tails using the Tube_Tails macro.

[start_X !E] [finish_X !E]

Defines the start and finish x-axis region to fit to.

[str | dummy_str]...

Defines a new structure node.

[str_hkl_angle N #h #k #l]...

Defines a parameter name N and a vector normal to the plane defined by h, k and l. When
the parameter name is used in an equation, it returns angles (in radians) between itself and
the normal to the planes defined by hkls.

[suspend_writing_to_log_file #1]

When num_runs > 0, then, by default, output to TOPAS.LOG (or TC.LOG if running TC.EXE) is
suspended after the first run (Run_Number == 0). suspend_writing_to_log_file changes this
behaviour.

[temperature !E]...
[move_to_the_next_temperature_regardless_of_the_change_in_rwp]
[save_values_as_best_after_randomization]
[use_best_values]

A temperature regime has no effect unless the reserved parameter T is used in val_on_con-
tinue attributes, or, if the temperature dependent keywords rand_xyz or randomize_on_er-
rors are used. randomize_on_errors automatically determine parameter displacements
without the need for rand_xyz or val_on_continue. It performs well on a wide range of prob-
lems. The reserved parameter T returns the current temperature. The first temperature de-
fined becomes the starting temperature; subsequent temperature(s) become the current
temperature. If 𝜒0

2 increases relative to a previous cycle, then the temperature is advanced
to the next temperature. If 𝜒0

2 decreases relative to previous temperatures of lesser values,
then the current temperature is rewound to a previous temperature such that its previous
is of a greater value. move_to_the_next_temperature_regardless_of_the_change_in_rwp

Keywords 244

244 Keywords

forces the refinement to move to the next temperature regardless of the change in Rwp from
the previous temperature. save_values_as_best_after_randomization saves the current set
of parameters and gives them the status of “best solution”. Note, this does not change the
global “best solution” which is saved at the end of refinement. use_best_values replaces
the current set of parameters with those marked as “best solution”. The temperature re-
gime defined in the Auto_T macro is sufficient for most problems. A typical temperature
regime starts with a high value and then a series of annealing temperatures, for example:

temperature 2
move_to_the_next_temperature_regardless_of_the_change_in_rwp

temperature 1 temperature 1 temperature 1

If the current temperature is the last one defined (the fourth one), and 𝜒0
2 decreased rela-

tive to the second and third temperatures, then the current temperature is set to the sec-
ond temperature. The current temperature can be used in all equations using the reserved
parameter T, for example:

x @ 0.123 val_on_continue = Val + T Rand(-.1, .1)

The following temperature regime will allow parameters to randomly walk for the first tem-
perature. At the second temperature the parameters are reset to those that gave the "best
solution".

temperature 1 temperature 1 use_best_values
temperature 1 temperature 1 use_best_values
temperature 1
temperature 10
 save_values_as_best_after_randomization
 move_to_the_next_temperature_regardless_of_the_change_in_rwp

Note, that when a "best solution" is found, the temperature is rewound to a position where
the temperature decreased. For example, if the Rwp dropped at lines 2 to 5 then the next
temperature will be set to "line 1". The following temperature regime will continuously use
the "best solution" before randomisation; it has a tendency to remain in a false minimum.

temperature 1 use_best_values

[th2_offset E]...

Used for applying 2 corrections to phase peaks. The following applies a sample displace-
ment correction:

th2_offset = -2 Rad (c) Cos(Th) / Rs;

th2_offset is used for example in the Zero_Error and Specimen_Displacement macros.

[user_defined_convolution E min E max E]...

User defined convolutions are convoluted into phase peaks and can be a function of X. The
min/max equations are mandatory, they define the x-axis extents of the

Keywords 245

245 Keywords

user_defined_convolution where min ≤ 0 and max ≥ 0. For example, a sinc function can be
convoluted into phase peaks (example AU111.INP) as follows:

str ...
prm k 10 min 0.001 max 100
user_defined_convolution = If(Abs(X) < 10^(-10), 1, (Sin(k X) /(k X))^2);

min -3 max 3

[use_tube_dispersion_coefficients]

Forces the use of Laboratory tube anomalous dispersion coefficients, see section 20.9.

[verbose #1]...

A value of 1 instructs the kernel to output in a verbose manner. A value of 0 reduces kernel
output such that text output is initiated at the end of a refinement cycle. A value of -1 re-
duces kernel output further such that text output is initiated every second in time and only
Rwp values at the end of a refinement cycle is kept. The Simulated_Annealing_1 macro has
verbose set to -1; this ensures that long simulated annealing runs do not exhaust memory
due to saving Rwp values in text output buffers.

[view_structure]

Informs the GUI to display the structure.

[weighting !E [recal_weighting_on_iter]]

Used for calculating the xdd dependent weighting function in 𝜒0
2. Can be a function of the

reserved parameter names X, Yobs, Ycalc and SigmaYobs. The default is as follows:

weighting = 1 / Max(Yobs, 1);

In cases where weighting is a function of Ycalc then recal_weighting_on_iter can be used
to recalculate the weighting at the start of refinement iterations. Otherwise, the weighting
is recalculated at the start of each refinement cycle. Note that some goodness of fit indi-
cators such as r_wp are a function of weighting, see Table 4-2.

[x_calculation_step !E]

Calculation step used in the generation of phase peaks and fit_obj’s. Peak_Calcula-
tion_Step is the actual step size used. For an x-axis with equidistant steps and x_calcula-
tion_step not defined then:

Peak_Calculation_Step = “Observed data step size” / convolution_step

otherwise

Peak_Calculation_Step = x_calculation_step / convolution_step

x_calculation_step can be a function of Xo and Th. In some situations, it may be computa-
tionally efficient to write x_calculation_step in terms of the function Yobs_dx_at and the

Keywords 246

246 Keywords

reserved parameter Xo. It is also mandatory to define x_calculation_step for data with un-
equal x-axis steps (*.XY or *.XYE data files). Example usage:

x_calculation_step 0.01
x_calculation_step = 0.02 (1 + Tan(Th));
x_calculation_step = Yobs_dx_at(Xo);

[xdd $file [{ $data }] [range #] [xye_format] [gsas_format] [fullprof_format]]...
[gui_reload]
[gui_ignore]

Defines the start of xdd dependent keywords and the file containing the observed data.
{$data} allow for insertion of ASCII data directly into the INP file. range applies to Bruker
AXS *.RAW data files; in multi-range files it defines the range to be refined with the first
range starting at 1 (the default). xye_format (see section 20.35 as well) signals the loading
of columns of x, y and error values. gsas_format and fullprof_format signals the loading of
GSAS and FullProf file formats. The following will refine on the first range in the data file
pbso4.raw:

xdd pbso4.raw

The following will refine on the third range:

xdd pbso4.raw range 3

To read data directly from an INP file, the following can be used:

xdd {
1 1 10 ‘ start, step and finish (equidistant data)
1 2 3 4 5 6 7 8 9 10

}

xdd {

_xy ‘ switch indicating x-y format
0.1 1 0.2 2 ...

}

When in Launch mode; data files by default are not reloaded if already loaded. gui_reload
forces the reload of the data file. Data files are loaded/reloaded into the GUI under the fol-
lowing circumstances:

• The data file is not loaded into the GUI

• Any of the following keywords have been used at the xdd level:

gui_reload, rebin_with_dx_of, smooth, yobs_eqn, yobs_to_xo_posn_yobs

gui_reload can be used in cases where the data file has been changed by a process not
listed. gui_ignore informs the GUI to ignore the xdd data file; Ycalc, difference and other
items associated with the data file is not retrieved from the Kernel.

Keywords 247

247 Keywords

 [xdd_out $file [append]]...

Used for writing xdd dependent details to file. The out_eqn can contain the reserved pa-
rameter names of X, Yobs, Ycalc and SigmaYobs. See out for a description of out_record.
The Out_Yobs_Ycalc_and_Difference macro is a good example of using xdd_out.

[xdd_scr $file] ...
[dont_merge_equivalent_reflections]
[dont_merge_Friedel_pairs]
[ignore_differences_in_Friedel_pairs]
[str]...

[auto_scale !E]
[i_on_error_ratio_tolerance #]
[num_highest_I_values_to_keep #num]

xdd_scr defines single crystal data from the file $file. The file can have extensions of *.HKL
for ShelX HKL4 format or *.SCR for SCR format. All xdd and str keywords that are not de-
pendent on powder data can be used by xdd_scr. Single crystal data is internally stored in
2 versus Fo

2 format; this allows the use of start_X, finish_X and exclude keywords; a lam
definition is required.

dont_merge_equivalent_reflections prevent merging of equivalent reflections, see also
section 20.9.3. dont_merge_Friedel_pairs prevent merging of Friedel pairs. ignore_differ-
ences_in_Friedel_pairs force the use of Eq. (20-12) for calculating F2. auto_scale rewrites
the scale parameter in terms of F2

; this eliminates the need for the scale parameter. The
value determined for auto_scale is updated at the end of refinement. i_on_error_ratio_tol-
erance filters out hkl’s that does not meet the condition:

|Fo| > i_on_error_ratio_tolerance | Sigma(Fo) |

num_highest_I_values_to_keep removes all hkl’s except for #num hkl’s with the highest Fo
values. An example input segment for single crystal data refinement is as follows:

xdd_scr ylidm.hkl
MoKa2(0.001)
finish_X 35
weighting = 1 / (Sin(X Deg / 2) Max(1, Yobs));
STR(P212121)
 a 5.9636
 b 9.0390
 c 18.3955
 scale @ 1.6039731906
 i_on_error_ratio_tolerance 4
 site S1 x @ 0.8090 y @ 0.1805 z @ 0.7402 occ S 1 beq 2
 site O1 x @ 0.0901 y @ 0.8151 z @ 0.2234 occ O 1 beq 2
 ...

The SCR format is white space delimited and consists of entries of h, k, l, m, d, 2, Fo
2 which

is the format outputted by the Create_hklm_d_Th2_Ip_file macro.

Keywords 248

248 Keywords

[xo_Is]...
[xo E I E]...

Defines a phase type that uses x-axis space for generating peak positions, see example
XOIS.INP. xo corresponds to the peak position, and I is the intensity parameter before ap-
plying scale_pks equations.

[yobs_eqn !N E min E max E del E]

Observed data is created via an equation; this is useful for approximating functions. The
name !N given to the equation is used for identifying the plot in the GUI.

[yobs_to_xo_posn_yobs !E]

At the start of refinement, yobs_to_xo_posn_yobs decomposes an X-ray diffraction pattern
into a new pattern comprising at most one data point per hkl. Fitting to the decomposed
pattern in a normal Rietveld refinement manner is then possible due to the ability to refine
data of unequal x-axis step sizes. This normal Rietveld manner of fitting is important in
structure solution from simulated annealing as the background can still be refined and the
problem of peak overlap avoided. These new data points are not extracted intensities and
thus the problem of peak overlap, as occurs in intensity extraction, is avoided. The much
smaller number of data points in the new diffraction pattern can greatly improve speed in
structure solution; in other words, the calculation time in synthesizing the diffraction pat-
tern becomes close to that of when dealing with single crystal data. If the distance between
two hkls is less than the value of yobs_to_xo_posn_yobs then the proposed data point at
one of these hkls is discarded. Thus, the final decomposed pattern may in fact have less
data points than hkls. A reasonable value for yobs_to_xo_posn_yobs is Peak_Calcula-
tion_Step, or,

yobs_to_xo_posn_yobs = Peak_Calculation_Step;

yobs_to_xo_posn_yobs can be a function of the reserved parameter X with X being the
value of the x-axis at the hkl. For refinement stability, all peak shape, zero error and lattice
parameters should be determined and then fixed before using yobs_to_xo_posn_yobs.
Also, if the original diffraction pattern is noisy then it may be best to smooth the pattern
using smooth or re-binned using rebin_with_dx_of. Alternatively, a calculated pattern could
be used as input into the yobs_to_xo_posn_yobs. Note that structure solution can be
speed-up by preventing graphical output or by increasing the Graphics Response Time in
the GUI. See examples CIME-DECOMPOSE.INP and PBSO4-DECOMPOSE.INP.

Macros and Include files 249

249 Macros and Include files

22. MACROS AND INCLUDE FILES
Macros appearing in INP files are expanded by the pre-processor. The pre-processor com-
prises two types of directives, global types and types that are invoked on macro expansion;
directives begin with the character # and are:

Directives with global scope:

macro $user_defined_macro_name { ... }

#include $user_defined_macro_file_name

#delete_macros { $macros_to_be_deleted }

#define, #undef, #if, #ifdef, #ifndef, #else, #elseif, #endif, #prm

#seed – initializes the random number generator at the pre-processor stage.

Directives invoked on macro expansion:

#m_if, #m_ifarg, #m_elseif, #m_else, #m_endif

#m_code, #m_eqn, #m_code_refine, #m_one_word

#m_argu, #m_first_word, #m_unique_not_refine

22.1 ... The macro directive

Macros are defined using the macro directive; here's an example:

macro Cubic(cv) { a cv b = Get(a); c = Get(a); }

Macros can have multiple arguments or none; the Cubic macro above has one argument; here
are some example uses of Cubic:

Cubic(4.50671)
Cubic(a_lp 4.50671 min 4.49671 max 4.52671)
Cubic(!a_lp 4.50671)

The first instance defines the a, b and c lattice parameters without a parameter name. The
second defines the lattice parameters with a name indicating refinement of the a_lp parame-
ter. In the third example, the a_lp parameter is preceded by the ! character. This indicates that
the a_lp parameter is not to be refined; it can however be used in equations. The definition of
macros need not precede its use. For example, in the segment:

xdd...
Emission_Profile ‘ this is expanded
macro Emission_Profile { CuKa2(0.001) }

Even though the Emission_Profile macro has been defined after its use, Emission_Profile is
expanded to "CuKa2(0.001)".

Macro names need not be unique; in cases where more than one macro have the same name
then the actual macro expanded is determined by the number of arguments. For example, if
the macro Slit_Width(0.1) is used then the Slit_Width(v) macro is expanded. On the other hand

Macros and Include files 250

250 Macros and Include files

if the macro Slit_Width(sw, .1) is used then the Slit_Width(c, v) macro is expanded. Macros can
also expand to macro names. For example, the Crystallite_Size macro expands to CS and since
CS is a macro then the CS macro is expanded.

22.1.1 Directives with global scope

#include $user_defined_macro_file_name

Include files are used to group macros. The file TOPAS.INC contains standard macros; it’s
a good place to view examples. Text within include files are inserted at the position of the
#include directive, thus the following:

#include "my include file.inc"

inserts the text within "my include file.inc" at the position of the #include directive. The
standard macro file TOPAS.INC is always included by default.

#delete_macros { $macros_to_be_deleted }

Macros can be deleted using #delete_macros, for example the following

#delete_macros { LP_Factor SW ZE }

will delete previously defined macros, irrespective of the number of arguments, with the
names LP_Factor, SW and ZE.

#define, #undef, #ifdef, #ifndef, #else, #endif

The #define and #undef directives works similar-to the c pre-processor directives of the
same name. #define and #undef is typically used with #ifdef, #else, #endif directives to
control macro expansion in INP files. For example, the following:

#ifdef STANDARD_MACROS
xdd ...

#endif

will expand to contain the xdd keyword if STANDARD_MACROS has been previously de-
fined using a #define directive. The following will also expand to contain the xdd keyword
if STANDARD_MACROS has not been defined using a #define directive,

#ifdef !STANDARD_MACROS
 #define STANDARD_MACROS
 xdd ...
#endif

or,

#ifndef STANDARD_MACROS
 #define STANDARD_MACROS
 xdd ...
#endif

Macros and Include files 251

251 Macros and Include files

Note the use of the ‘!’ character placed before STANDARD_MACROS which means if
STANDARD_MACROS is not defined.

22.1.2 Pre-processor equations and #prm, #if, #elseif, #out

Pre-processor parameters, called hash parameters, are defined using the #prm directive.
#prm’s can be a function of other #prm’s and they can be used in #if, #elseif, #m_if and
#m_elseif pre-processor statements. #prm’s are only evaluated at the pre-processor stage of
loading INP files (see TEST_EXAMPLES\HASH_PRM.INP); they are therefore unknown to the ker-
nel and are totally separate to parameters defined using prm. Pre-processed output can be
found in the TOPAS.LOG file, when running TA.EXE, or TC.LOG when running TC.EXE.

#out and #m_out allows pre-processor #prm’s values, which can be strings or numbers, to be
placed into the pre-processed text. For example, the following:

#prm a = Constant(Rand(0,1));
#out a

will output a random number between 0 and 1 into the pre-processed file at the position of
#out. INP files can therefore be manipulated with #prm’s and #if statements with a means of
identifying the manipulation carried out. The following:

macro Ex1(a) {
#m_if a == "b";

Yes b
#m_elseif a == “c”;

Yes c
#m_endif

}
Ex1("b")

expands to:

Yes b

In the following:

#prm ran = Constant(Rand(0,1));
#if ran < 0.5;

view_structure
#endif
#if ran < 0.5;

view_structure
#endif
#if ran < 0.5;

view_structure
#endif

each call to ‘ran’ in the #if statements would return the same value because of the use of Con-
stant. More complicated INP file manipulation is shown in the following:

#prm space_group_number = 4;

Macros and Include files 252

252 Macros and Include files

#if And(space_group_number >= 75, space_group_number <= 142);
...

#elseif And(space_group_number >= 16, space_group_number <= 74);
...

#endif

22.1.3 A macro that repeats text using #out

A macro that repeats and modifies text can be formulated as follows:

macro Repeat(& n)
{
 #if (n > 0)
 A n
 Repeat(n-1)
 #endif
}

Repeat(10)

Output from the above looks like:

A (10) A ((10)-1) A (((10)-1)-1) A ((((10)-1)-1)-1) A (((((10)-1)-1)-1)-1) A ((((((10)-1)-

1)-1)-1)-1) A (((((((10)-1)-1)-1)-1)-1)-1) A ((((((((10)-1)-1)-1)-1)-1)-1)-1) A

(((((((((10)-1)-1)-1)-1)-1)-1)-1)-1) A ((((((((((10)-1)-1)-1)-1)-1)-1)-1)-1)-1)

This output may be intended. However, what is often intended is:

macro Repeat(& n)
{
 #if (n > 0)
 #prm a = n;
 #prm am1 = n - 1;
 A #out a
 Repeat(#out am1)
 #endif
}

Repeat(10)

and the output is as follows:

A 10 A 9 A 8 A 7 A 6 A 5 A 4 A 3 A 2 A 1

More succinctly again is to use the Numeric macro as follow:

macro Numeric(& n)
{
 #prm a = n; #out a

Macros and Include files 253

253 Macros and Include files

}
macro Repeat(& n)

{
 #if (n > 0)
 A Numeric(n)
 Repeat(Numeric(n-1))
 #endif
}

Repeat(10)

22.1.4 Directives invoked on macro expansion

#m_if, #m_ifarg, #m_elseif, #m_else, #m_endif, #m_if, #m_out

These are conditional directives that are invoked on macro expansion. #m_ifarg operates on
two statements immediately following its use; the first must refer to a macro argument and the
second can be any of the following: #m_code, #m_eqn, #m_code_refine, #m_one_word and
“some string”. #m_ifarg evaluates to true according to the rules of Table 22-1.

Table 22-1. #m_ifarg syntax and meaning.

 Evaluates to true if the following is true

#m_ifarg c #m_code If the macro argument c has a letter or the character ! as the
first character and if it is not an equation.

#m_ifarg c #m_eqn If the macro argument c is an equation.

#m_ifarg c #m_code_refine If the macro argument c has a letter as the first character and
if it is not an equation.

#m_ifarg c “some_string” If the macro argument c == “some_string”.

#m_ifarg v #m_one_word If the macro argument v consists of one word.

#m_argu, #m_first_word, #m_unique_not_refine

These operate on one macro argument with the intention of changing the value of the argument
according to the rules of Table 22-2.

Table 22-2. Directives that change the value of a macro argument.

#m_argu c Changes the macro argument c to a unique parameter name if
it has @ as the first character.

#m_unique_not_refine c Changes the macro argument c to a unique parameter name
that is not to be refined.

#m_first_word $v Replace the string macro argument $v with the first word oc-
curring in $v.

Macros and Include files 254

254 Macros and Include files

22.1.5 Defining unique parameters within macros

#m_unique $string assigns a unique parameter name to $string within a macro. This allows
new unique parameters to be defined within macros whilst avoiding name clashes. In the ex-
ample:

macro Some_macro(v) { prm #m_unique a = Cos(Th); : v }

'a' is assigned a unique parameter name and it has the scope of the macro body text. The Ro-
bust_Refinement and TCHZ_Peak_Type macros are good examples of its use, where for exam-
ple, the former is defined as:

macro Robust_Refinement {
‘ Robust refinement algorithm
prm #m_unique test = Get(r_exp);
prm #m_unique N = 1 / test^2;
prm #m_unique p0 = 0.40007404;
prm #m_unique p1 = -2.5949286;
prm #m_unique p2 = 4.3513542;
prm #m_unique p3 = -1.7400101;
prm #m_unique p4 = 3.6140845e-1;
prm #m_unique p5 = -4.45247609e-2;
prm #m_unique p6 = 3.5986364e-3;
prm #m_unique p7 = -1.8328008e-4;
prm #m_unique p8 = 5.7937184e-6;
prm #m_unique p9 = -1.035303e-7;
prm #m_unique p10 = 7.9903166e-10;
prm #m_unique t = (Yobs - Ycalc) / SigmaYobs;
weighting = If(t < 0.8, N / Max(SigmaYobs^2, 1), If(t < 21, N ((((((((((p10 t +

p9) t + p8) t + p7) t + p6) t + p5) t + p4) t + p3) t + p2) t + p1) t + p0)
/ (Yobs - Ycalc)^2, N (2.0131 Ln(t) + 3.9183) / (Yobs - Ycalc)^2));

recal_weighting_on_iter
}

22.1.6 Superfluous parentheses and the '&' Type for macros

The pre-processor is an un-typed language meaning that it knows nothing about the type of
text passed as macro arguments. This is flexible but problematic. For example, the following:

macro divide(a, b) { a / b }
prm e = divide(a + b, c - d);

expands to the unintended result of:

prm e = a + b / c - d;

The writer of the macro could solve this problem by rewriting the macro with parentheses:

macro divide(a, b) { (a) / (b) }

Alternatively, macro arguments can be prefixed with the & character signalling that the argu-
ment is of an equation type, for example:

Macros and Include files 255

255 Macros and Include files

macro divide(& a, & b) { a / b }
prm e = divide(a + b, c - d);

The program inspects &-type arguments and parentheses are included as needed. This results
in the correct expansion of:

prm e = (a + b) / (c - d);

Even with the use of &-types for arguments, the following:

macro divide(& a, & b) { a / b }
prm e = divide(a + b, c - d)^2;

expands to the unintended:

prm e = (a + b) / (c - d)^2;

The writer of the macro could again rewrite the macro to include more parentheses:

macro divide(a, b) { ((a) / (b)) }

Or define the expansion of the macro itself to have an &-type by placing the & character before
the macro name itself:

macro & divide(& a, & b) { a / b }

Expansion of prm e = divide(a + b, c - d)^2 now becomes the intended:

prm e = ((a + b) / (c - d))^2;

With the use of the &-type, macros such as Ramp defined in Version 4 as:

macro Ramp(x1, x2, n) { ((x1)+((x2)-(x1)) Mod(Cycle_Iter,(n))/((n)-1)) }

can be written with less parentheses as follows:

macro & Ramp(& x1,& x2,& n) { x1 + (x2 - x1) Mod(Cycle_Iter, n) / (n-1) }

22.2 ... Overview

The file TOPAS.INC is included in INP files by default; it contains commonly used standard mac-
ros. The meaning of the macro arguments in TOPAS.INC can be readily determined from the
following conventions:

Arguments called "c" correspond to a parameter name.
Arguments called "v" correspond to a parameter value.
Arguments called "cv" correspond to a parameter name and/or value.

Macros and Include files 256

256 Macros and Include files

For example, the Cubic(cv) macro requires a value and/or a parameter name as an argument,
i.e.

Cubic(a_lp 10.604)
Cubic(10.604)
Cubic(@ 10.604 min 10.59 max 10.61)

Here are examples for the Slit_Width macro:

SW(@, 0.1)
SW(sw, 0.1 min = Val-.02; max = Val+.02;)
SW((ap+bp)/cp, 0) ‘ where ap, bp and cp are parameters defined elsewhere

22.2.1 xdd macros

RAW(path_no_ext)
RAW(path_no_ext, range_num)
DAT(path_no_ext)
XDD(path_no_ext)
XY(path_no_ext, calc_step)
XYE(path_ext)
SCR(path_no_ext)
SHELX_HKL4(path_no_ext)

22.2.2 Lattice parameters

Cubic(cv)
Tetragonal(a_cv, c_cv)
Hexagonal(a_cv, c_cv)
Rhombohedral(a_cv, al_cv)

22.2.3 Emission profile macros

No_Th_Dependence
CuKa1(yminymax)
CuK1sharp(yminymax)
CuKa2_analyt(yminymax)
CuKa2(yminymax)
CuKa4_Holzer(yminymax)
CuKa5(yminymax)
CuKa5_Berger(yminymax)
CoKa3(yminymax)
CoKa7_Holzer(yminymax)
CrKa7_Holzer(yminymax)

FeKa7_Holzer(yminymax)
MnKa7_Holzer(yminymax)
NiKa5_Holzer(yminymax)
MoKa2(yminymax)
CuKb4_Holzer(yminymax)
CoKb6_Holzer(yminymax)
CrKb5_Holzer(yminymax)
FeKb4_Holzer(yminymax)
MnKb5_Holzer(yminymax)
NiKb4_Holzer(yminymax)

22.2.4 Instrument and instrument convolutions

Radius(rp, rs)

Primary and secondary instrument radii (mm). For most diffractometers rp = rs.

Specimen_Tilt(c, v)

Specimen tilt in mm.

Macros and Include files 257

257 Macros and Include files

Slit_Width(c, v) or SW(c, v)

Aperture of the receiving slit in the equatorial plane in mm.

Sample_Thickness(dc, dv)

Sample thickness in mm in the direction of the scattering vector.

Divergence(c, v)

Horizontal divergence of the beam in degrees in the equatorial plane.

Variable_Divergence(c, v)
Variable_Divergence_Shape(c, v)
Variable_Divergence_Intensity

Constant illuminated sample length in mm for variable slits (i.e. variable beam divergence).
This Variable_Divergence macro applies both a shape and intensity correction.

Simple_Axial_Model(c, v)

Receiving slit length mm for describing peak asymmetry due to axial divergence.

Full_Axial_Model(filament_cv, sample_cv, detector_cv, psol_cv, ssol_cv)

Accurate model for describing peak asymmetry due to axial divergence of the beam.

[filament_cv]: Tube filament length in [mm].

[sample_cv]: Sample length in axial direction in [mm].

[detector_cv]: Length of the detector (= receiving) slit in [mm].

[psol_cv, ssol_cv]: Aperture of the primary and secondary Soller slit in [°].

Finger_et_al(s2, h2)

Finger et al., 1994. model for describing peak asymmetry due to axial divergence.

[s2, h2]: Sample length, receiving slit length.

Tube_Tails(source_width_c, source_width_v, z1_c, z1_v, z2_c, z2_v, 1z2_h_c, z1z2_h_v)

Model for description of tube tails (Bergmann, 2000).

[source_width_c, source_width_v]: Tube filament width in [mm].

[z1_c, z1_v]: Effective width of tube tails in the equatorial plane perpendicular to the X-ray
beam - negative z-direction [mm].

[z2_c, z2_v]: Effective width of tube tails in the equatorial plane perpendicular to the X-ray
beam - positive z-direction [mm].

[z1_z2_h_c, z1_z2_h_v]: Fractional height of the tube tails relative to the main beam.

UVW(u, uv, v, vv, w, wv)

Cagliotti relation (Cagliotti et al., 1958).

[u, v, w]: Parameter names.

[uv, vv, wv]: Halfwidth value.

Macros and Include files 258

258 Macros and Include files

22.2.5 Phase peak_type's

PV_Peak_Type(ha, hav, hb, hbv, hc, hcv, lora, lorav, lorb, lorbv, lorc, lorcv)
TCHZ_Peak_Type(u, uv, v, vv, w, wv, z, zv, x, xv, y, yv)
PVII_Peak_Type(ha, hav, hb, hbv, hc, hcv, ma, mav, mb, mbv, mc, mcv)

Pseudo-Voigt, TCHZ pseudo-Voigt and PearsonVII functions. For the definition of the func-
tions and function parameters refer to section 5.2.

22.2.6 Quantitative Analysis

Apply_Brindley_Spherical_R_PD(R, PD)

Applies the Brindley correction for quantitative analysis (Brindley, 1945).

MVW(m_v, v_v, w_v)

Returns cell mass, cell volume and weight percent.

22.2.7 2Th Corrections

Zero_Error or ZE(c, v)

Zero point error.

Specimen_Displacement(c, v) or SD(c, v)

Specimen displacement error.

22.2.8 Intensity Corrections

LP_Factor(c, v)

Lorentz and Lorentz-Polarisation factor.

[c, v]: Monochromator angle in [°2]

Values for most common monochromators (Cu radiation) are:

Ge : 27.3°
Graphite : 26.4°
Quartz : 26.6°

Lorentz_Factor

Lorentz factor for fixed wavelength neutron data.

Surface_Roughness_Pitschke_et_al(a1c, a1v, a2c, a2v)
Surface_Roughness_Suortti(a1c, a1v, a2c, a2v)

Suortti and Pitschke et al. intensity corrections each with two parameters a1 and a2.

Preferred_Orientation(c, v, ang, hkl) or PO(c, v, ang, hkl)

Preferred orientation correction based on March (1932).

[c, v]: March parameter value.

[ang, hkl]: Lattice direction.

Macros and Include files 259

259 Macros and Include files

PO_Two_Directions(c1, v1, ang1, hkl1, c2, v2, ang2, hkl2, w1c, w1v)

Preferred orientation correction based on March (1932) considering two preferred orienta-
tion directions.

[c1, v1]: March parameter value for the first preferred orientation direction.

[ang1, hkl1]: Parameter name and lattice plane for the first preferred orientation direction.

[c2, v2]: March parameter value for the second preferred orientation direction.

[ang2, hkl2]: Lattice direction for the second preferred orientation direction.

[w1c, w1v]: Fraction of crystals oriented into first preferred orientation direction.

PO_Spherical_Harmonics(sh, order)

Preferred orientation correction based on spherical harmonics according to Järvinen
(1993).

[(sh, order)]: Parameter name, spherical harmonics order.

22.2.9 Bondlength penalty functions

Anti_Bump(ton, s1, s2, ro, wby)
AI_Anti_Bump(s1, s2, ro, wby, num_cycle_iters), AI_Anti_Bump(s1, s2, ro, wby)

Applies a penalty function as a function of the distance between atoms. The closer the at-
oms are the higher the penalty is.

[ton]: Sets to_N of box_interaction.

[s1, s2]: Sites.

[ro]: Distance.

[wby]: Relative weighting given to the penalty function.

For more details refer to box_interaction and ai_anti_bump.

Parabola_N(n1, n2, s1, s2, ro, wby)

Applies a penalty function as a function of the distance between atoms. The closer the at-
oms are the higher the penalty is.

[n1]: The closest n1 number of atoms of type s2 is soft constrained to a distance ro away
from s1 .

[n2]: The closest n2 number of atoms of type s2 (excluding the closest n1 number of atoms
of type s2) is repelled from s1, for distances between s1 and s2 less than ro.

[s1, s2]: Sites.

[ro]: Distance.

[wby]: Relative weighting given to the penalty function.

Grs_Interaction(s1, s2, wqi, wqj, c, ro, n)

Penalty function applying the GRS series according to Coelho & Cheary (1997).

[s1, s2]: Sites.

Macros and Include files 260

260 Macros and Include files

[wqi, wqj]: Valence charge of the atoms.

[c]: Name of the GRS.

[ro]: Distance.

[n]: The exponent of the repulsion part of the Lennard-Jones potential.

For more details refer to grs_interaction.

Grs_No_Repulsion(s1, s2, wqi, wqj, c)

Used for calculating the Madelung constants.

[s1, s2]: Sites.

[wqi, wqj]: Valence charge of the atoms.

[c]: Name of the GRS.

Grs_BornMayer(s1, s2, wqi, wqj, c, ro, b)

Uses the GRS series with a Born-Mayer equation for the repulsion term.

[s1, s2]: Sites.

[wqi, wqj]: Valence charge of the atoms.

[c]: Name of the GRS.

[ro]: Mean distance.

[b]: b-constant for the repulsion part of the Born-Mayer potential.

Distance_Restrain(sites, t, t_calc, tol, wscale)
Angle_Restrain(sites, t, t_calc, tol, wscale)
Flatten(sites, t_calc, tol, wscale)
Distance_Restrain_Keep_Within(sites, r, wby, num_cycle_iters)
Distance_Restrain_Keep_Out(sites, r, wby, num_cycle_iters)

Applies penalties restraining distances and angles between sites. 'sites' must comprise
two sites for the distance restraints and three for the angle restraints. For Flatten, 'sites'
must contain more than three sites. wby is a scaling constant applied to the penalty.

Keep_Atom_Within_Box(size).

Applies a min/max constraints such that the present site cannot more outside of a box with
a length of 2*size.

22.2.10 Reporting macros

Create_2Th_Ip_file(file)

Creates a file with positions (2) and intensities.

Create_d_Ip_file(file)

Creates a file with positions (d) and intensities.

Macros and Include files 261

261 Macros and Include files

Create_hklm_d_Th2_Ip_file(file)

Creates a file with the following information for each peak: h, k, l, multiplicity, positions d
and 2 and intensities.

Out_Yobs_Ycalc_and_Difference(file)

Outputs the x-axis, Yobs, Ycalc and difference.

Out_X_Yobs(file), Out_X_Ycalc(file), Out_X_Difference(file)

Outputs the x-axis, Yobs, Ycalc and difference to files.

Out_F2_Details(file), Out_A01_A11_B01_B11(file)

Outputs structure factor details, see section 20.9.2.

Out_FCF(file)

Outputs a CIF file representation of structure factor details suitable for generating Fourier
maps using ShelX..

Out_CIF_STR(file)

Outputs structure details in CIF format.

Absorption_With_Sample_Thickness_mm_Shape_Intensity(u, uv, d, dv)

Corrects the peak intensity for absorption effects.

[u, uv]: Parameter name, absorption coefficient in cm-1.

[d, dv]: Parameter name, sample thickness in [mm].

CS_L(c,v) or Crystallite_Size(c, v) or CS(c, v)

Applies a Lorentzian convolution with a FWHM that varies according to the relation
lor_fwhm = 0.1 Rad Lam / (c Cos(Th)).

[c, v]: Parameter name, crystallite size in [nm].

CS_G(c, v)

Applies a Gaussian convolution with a FWHM that varies according to the relation

gauss_fwhm = 0.1 Rad Lam / (c Cos(Th));

 [c, v]: Parameter name, crystallite size in [nm].

Strain_L(c, v) or Microstrain(c, v) or MS(c, v)

Applies a Lorentzian convolution with a FWHM that varies according to the relation
lor_fwhm = c Tan(Th).

Strain_G(c, v)

Applies a Gaussian convolution with a FWHM that varies according to the relation
gauss_fwhm = c Tan(Th).

LVol_FWHM_CS_G_L(k, lvol, kf, lvolf, csgc, csgv, cslc, cslv)

Calculates FWHM and IB (integral breadth) based volume-weighted column heights (LVol).
For details refer to section 20.13.

Macros and Include files 262

262 Macros and Include files

[k, lvol]: shape factor (fixed to 1), integral breadth based LVol.

[kf, lvolf]: shape factor (defaults to 0.89), FWHM based LVol.

[csgc, csgv]: Parameter name, Gaussian component.

[cslc, cslv]: Parameter name, Lorentzian component.

22.2.11 Neutron TOF

TOF_XYE(path, calc_step), TOF_GSAS(path, calc_step)

Includes the neutron_data keyword and the calculation step size.

TOF_LAM(w_ymin_on_ymax)

Defines a simple emission profile suitable for TOF data

TOF_x_axis_calibration(t0, t0v, t1, t1v, t2, t2v)

Writes the pk_xo equation in terms of the three calibration constants t0, t1, t2 converting
d-spacing to x-axis space.

TOF_Exponential(a0, a0v, a1, a1v, wexp, t1, lr)

An exponential convolution applied to the TOF peaks - see example TOF_BANK2_1.INP.

TOF_CS_L(c, v, t1), TOF_CS_G(c, v, t1)

Lorentzian and Gaussian components for crystallite size. t1 is the calibration constant ap-
pearing in the argument of the macro TOF_x_axis_calibration.

TOF_PV(fwhm, fwhmv, lor, lorv, t1)

A pseudo-Voigt used to describe the instrumental broadening t1 is the calibration constant
appearing in the argument of the macro TOF_x_axis_calibration, see examples TOF_BAL-
ZAR_BR1.INP and TOF_BALZAR_SH1.INP.

22.2.12 Miscalleneous

Temperature_Regime

Defines a temperature regime. See the temperature keyword.

STR(sg)

Signals the start of structure information with a space group of sg.

Exclude

Defines excluded regions. See exclude.

Decompose(diff_toll)

Decompose a diffraction pattern comprising data points at peak positions only. Data points
closer than diff_toll to another data point is not included. Decompose also sets x_calcula-
tion_step to the value of diff_toll.

Macros and Include files 263

263 Macros and Include files

ADPs_Keep_PD

Mixture_LAC_1_on_cm(mlac)

Phase_Density_g_on_cm3(pd)

Phase_LAC_1_on_cm(u)

Gauss(xo, fwhm), Lorentzian(xo, fwhm)

An equation defines a unit area Gaussian or Lorentzian with a position of xo and a FWHM
of fwhm

Indexing 264

264 Indexing

23. INDEXING
The following algorithm is based on the iterative method of Coelho (2003). Unlike lp_serach it
requires the extraction of d-spacings. The INDEXING directory contains example INP files, ex-
ample usage is as follows:

index_zero_error
try_space_groups "2 75"
load index_d {
 8.912
 7.126
 4.296
 ...
}

Individual space groups can be tried or for simplicity all Bravais lattices can be tried using
standard macros as follows:

Bravais_Cubic_sgs
Bravais_Trigonal_Hexagonal_sgs
Bravais_Tetragonal_sgs
Bravais_Orthorhombic_sgs
Bravais_Monoclinic_sgs
Bravais_Triclinic_sgs

To try all unique extinction subgroup space-groups, a more exhaustive approach, then the fol-
lowing macros can be used:

Unique_Cubic_sgs
Unique_Trigonal_Hexagonal_sgs
Unique_Tetragonal_sgs
Unique_Orthorhombic_sgs
Unique_Monoclinic_sgs
Unique_Triclinic_sgs

On termination of Indexing a *.NDX file is created, with a name corresponding to the name of
the INP file and placed in the same directory as the INP file. The *.NDX file contains solutions
as well as a detailed summary of the best 20 solutions. Here’s an example of an NDX file:

‘ Indexing method - Alan Coelho (2003), J. Appl. Cryst. 36, 86-95
‘ Time: 2.015 seconds
 ‘Sg Status UNI Vol Gof Zero Lps ...
Indexing_Solutions_With_Zero_Error_2 {
 0) P42/nmc 3 0 1187.321 38.82 0.0000 11.1924 ...
 1) P42/nmc 3 0 1187.057 38.64 0.0000 11.1896 ...
 2) P42/nmc 3 0 1187.458 38.61 0.0000 11.1914 ...

...
}
/*
==
 0) P-1 0 985.652 30.80 0.0111 7.0877 ...

 h k l dc do do-dc 2Thc 2Tho 2Tho-2Thc
 0 0 1 15.857 15.830 -0.027 5.569 5.578 0.009

Indexing 265

265 Indexing

 0 1 0 8.765 8.750 -0.015 10.084 10.101 0.017
...

*/

23.1 ... Figure of merit

The figure of merit M used in indexing is as follows:

𝑀 = [(1 + 𝑁𝑢𝑛𝑖)𝑑𝑜,𝑚𝑖𝑛
2 (

𝑁𝑐

𝑁𝑜
) ∑|𝑑𝑜,𝑖

2 − 𝑑𝑐,𝑖
2 |𝑄𝑖

𝑖

]

−1

where 𝑄𝑖 = 𝑤𝑖𝑁𝑜 ∑ 𝑤𝑗𝑗⁄

(23-1)

Where do and dc are the observed and calculated d-spacings, No and Nc the number of ob-
served and calculated lines used, Nuni the number of unindexed lines and the summations are
over the used observed indexing lines. Qi is a weighting that assists in the determination of
extinction subgroups where wi could for example be the inverse of the error in the peak posi-
tions from a Pawley refinement (see INDEXING\MGIR\INDEX.INP). index_I correspond to wi. The
formulation of Qi is such that with or without Qi the figure of merit M is of the same order of
magnitude. The reciprocal-space lattice relationship solved during the indexing process (Coe-
lho, 2000) includes Q as follows:

[𝑋ℎℎℎ2 + 𝑋𝑘𝑘𝑘2 + 𝑋𝑙𝑙𝑙
2 + 𝑋ℎ𝑘ℎ 𝑘 + 𝑋ℎ𝑙ℎ 𝑙 + 𝑋𝑘𝑙𝑘 𝑙 +

4 𝜋𝑍𝑒

360𝜆2
𝑠𝑖𝑛(2𝜃)] 𝑊ℎ𝑘𝑙 =

𝑊ℎ𝑘𝑙

𝑑𝑜
2

where 𝑊ℎ𝑘𝑙 = 𝑄ℎ𝑘𝑙𝑑𝑜
𝑚|𝛥2𝜃ℎ𝑘𝑙|

(23-2)

23.2 ... Extinction subgroup determination

At the end of an indexing run further indexing runs are internally performed across extinction
subgroups (see section 14.8) to determine the most likely subgroup. These internal runs are
seeded with already determined lattice parameters and in most cases the correct extinction
subgroup is obtained without the need for Qi in Eq. (14-1). Extinction subgroups can be explic-
itly searched using the macros defined TOPAS.INC, see for example Unique_Orthorhom-
bic_sgs.

23.3 ... Reprocessing solutions - DET files

Details of solutions can be obtained at a later stage by including solution lines, found in the
NDX file, in the INP file. For example, supposing details of solutions 50 and 51 were sought then
the following (see example INDEXING\EX10.INP) could be used:

Indexing 266

266 Indexing

index_lam 1.540596
index_zero_error
try_space_groups 2
Indexing_Solutions_With_Zero_Error_2 {
 50) P-1 1 0 2064.788 9.74 0.0000 ...
 51) P-1 3 0 3128.349 9.61 0.0115 ...
}
load index_d {
 15.83 good
 8.75
 7.91
 ...
}

After running this INP file, a *.DET file is created containing details of the supplied solutions.

23.4 ... Keywords and data structures

Tindexing
[index_lam !E1.540596]
[index_min_lp !E2] [index_max_lp !E]
[index_max_Nc_on_No !E5]
[index_max_number_of_solutions #3000]
[index_max_th2_error !E0.05]
[index_max_zero_error #0.2]
[index_th2 !E | index_d !E]...

[index_I E1 [good]]
[index_x0 !E]
[index_zero_error]
[no_extinction_subgroup_search]
[seed [#]]
[try_space_groups $]...

[x_angle_scaler #0.1]
[x_scaler #]

Values for most keywords are automatically determined or have defaults (appearing as num-
bers to the right) adequate for difficult indexing problems. In the following example from UPPW
(service provided by Armel Le Bail to the SDPD mailing list at http://sdpd.univ-
lemans.fr/uppw/), only a few keywords are necessary. Also note the use of dummy; this allows
for the exclusion of 2 and I values without having to edit the columns of data.

http://sdpd.univ-lemans.fr/uppw/
http://sdpd.univ-lemans.fr/uppw/

Indexing 267

267 Indexing

seed
index_lam 0.79776
index_zero_error
index_max_Nc_on_No 6
try_space_groups 3
load index_th2 dummy dummy index_I dummy {

‘ d (A) 2Theta Height Area FWHM
1.724 26.50645 2758.3 23303.7 0.0450
2.646 17.27733 150393.8 747063.6 0.0250
3.235 14.13204 98668.8 493153.7 0.0250
3.417 13.37776 11102.6 53185.0 0.0250
5.190 8.80955 782.7 3910.9 0.0250
...

}

23.5 ... Keywords in detail

[index_lam !E1.540596]

Defines the wavelength in Å.

[index_min_lp !E2.5] [index_max_lp !E]

Defines the minimum and maximum allowed lattice parameters. The maximum is typically
automatically determined.

[index_max_Nc_on_No !E5]

Determines the maximum ratio of the number of calculated to observed lines. The value of
6 allows for up to 83% of missing lines.

[index_max_number_of_solutions #1000]

The number of best solutions to keep.

[index_max_th2_error !E0.05]

Used for determining impurity lines (un-indexed lines UNI in *.NDX). Large values, 1 for ex-
ample, forces the consideration of more observed input lines. For example, if it is known
that there are none or maybe just one impurity line then a large value for index_max_th2_er-
ror will speed up the indexing procedure.

[index_max_zero_error !E0.2]

Excludes solutions with zero errors greater than index_max_zero_error.

[index_th2 !E | index_d !E]...
[index_I E1 [good]]

index_th2 or index_d defines a reflection entry in 2 degrees or d-spacing in Å. index_I is
typically set to the area under the peak; it is used to weight the reflection. good signals that
the corresponding d-spacing is not an impurity line. A single use of good on a large d-

Indexing 268

268 Indexing

spacing decreases the number of possible solutions and hence speeds up the indexing
process (see example INDEXING\EX10.INP).

[index_x0 !E]

Defines Xhh in the reciprocal lattice equation of (14-1). In a triclinic lattice the largest d-
spacing can probably be indexed as 100 or 200 etc. Thus

index_x0 = 1/(dmax)^2;

speeds up the indexing process (if, in this case, the first line can be indexed as 100) and
additionally the chance of finding the correct solution is enhanced, see EX13.INP. Note, if
the data is in 2Th degrees then the following can be used:

index_x0 = (2 Sin(2Thmin Pi/360) / wavelength))^2;

The two macros Index_x0_from_d and Index_x0_from_th2 simplify the use of index_x0.

[index_zero_error]

Includes a zero error.

[no_extinction_subgroup_search]

By default, Extinction subgroup determination is performed at the end of an indexing run;
this can be negated by defining no_extinction_subgroup_search.

[seed [#]]

Seeds the random number generator.

[try_space_groups $]...
[x_angle_scaler #0.1]
[x_scaler #]

Defines the space groups to be searched. The macros Bravais_Cubic_sgs etc... (see
TOPAS.INC) defines lowest symmetry Bravais space groups. It is typically sufficient to use
only these. Higher symmetry space groups for the Bravais lattices corresponding to the 10
best solutions is automatically searched at the end of an indexing run. Here are some ex-
amples of using try_space_groups.

Search Use

Primitive monoclinic try_space_groups 3

Monoclinic Bravais lattices of lowest symmetry Bravais_Monoclinic_sgs

C-centered monoclinic of lowest symmetry try_space_groups 5

All orthorhombic space groups individually Unique_Orthorhombic_sgs

Indexing 269

269 Indexing

x_scaler is a scaling factor used for determining the number of steps to search in parameter
space. x_scaler needs to be less than 1. Increasing x_scaler searches parameter space in
finer detail. Default values are as follows:

Cubic 0.99
Hexagonal/Trigonal 0.95
Tetragonal 0.95

Orthorhombic 0.89
Monoclinic 0.85
Triclinic 0.72

x_angle_scaler is a scaling factor for determining the number of angular steps for mono-
clinic and triclinic space groups. Small values, 0.05 for example, increases the number of
angular steps. The default value of 0.1 is usually adequate.

23.6 ... Identifying dominant zones

Here are two example output lines from an NDX file.

0) P42/nmc 3 0 1187.124 38.82 0.000 11.1904 11.1904 9.4799 90.00 90.00 90.00 ‘ === 24 19
6) P-421c 3 0 1187.124 35.67 0.000 11.1904 11.1904 9.4799 90.00 90.00 90.00 ‘ === 24 19

- The 1st column corresponds to the rank of the solution.

- The 2nd corresponds to the space group.

- The 3rd corresponds to the Status of the solution as follows:

 Status 1: Weighting applied as defined in Coelho (2003).

 Status 2: Zero error attempt applied.

 Status 3: Zero error attempt successful and impurity lines removal successful.

 Status 4: Impurity line(s) removed.

- The 4th column corresponds to the number of un-indexed lines.

- The 5th column corresponds to the volume of the lattice.

- The 6th corresponds to the goodness of fit value.

- The 7th corresponds to the zero error if index_zero_error is included.

- Columns 8 to 13 contains the lattice parameters.

The last two columns, let call them column Q1 and Q2, contain the number of non-zero (h2 + k2
+ h k) and l2 values, respectively, used in the indexed lines. Q1 and Q2 represent the hkl coeffi-
cient for X0 and X1 respectively for Trigonal/Hexagonal systems. When Q1=-999 or Q2=-999
then the corresponding lattice parameters are not represented. This facility is useful for iden-
tifying dominant zones. For example, if the smallest lattice parameter is 3Å and the smallest
d-spacings is 4Å then it is impossible to determine the small lattice parameter. In such cases
values of –999 will be obtained. The following table gives the hkl coefficients corresponding to
the Xnn reciprocal lattice parameters for the 7 crystal systems.

 X0 X1 X2 X3 X4 X5

Cubic h2+k2+l2

Hexagonal, Trigonal h2+k2+h k l2

Indexing 270

270 Indexing

Tetragonal h2+k2 l2

Orhtorhombic h2 k2 l2

Monoclinic h2 k2 l2 h l

Triclinic h2 k2 l2 h k h l k l

23.7 ... *** Probable causes of Failure ***

The most probable cause of failure is the inclusion of too many d-spacings. If it is assumed that
the smallest lattice parameter is greater than 3Å then it is problematic to include d-spacings
with values less than about 2.5Å when there are already 30 to 40 reflections with d values
greater than 2.5Å. Some of the problems caused by very low d-spacings are:

• The number of calculated lines increases dramatically and thus index_max_Nc_on_No will
need to be increased.

• The low d-spacings are probably inaccurate due to peak overlap.

A situation where it is necessary to include low d-spacings is when there are only a few d-spac-
ings available as in higher symmetry lattices.

23.8 ... Space groups with identical absences – Extinction subgroups

The following table lists spaces groups than have identical hkls. Typically, an indexing run will
identify one space-group from the extinction group.

Space group numbers with

identical hkls

Space group symbols with

identical hkls

Triclinic

1 2 P1 P-1

Monoclinic

9 15 Cc C2/c

5 8 12 C2 Cm C2/m

14 P21/c

7 13 Pc P2/c

4 11 P21 P21/m

3 6 10 P2 Pm P2/m

Orthorhombic

70 Fddd

43 Fdd2

22 42 69 F222 Fmm2 Fmmm

68 Ccca

73 Ibca

37 66 Ccc2 Cccm

45 72 Iba2 Ibam

41 64 Aba2 Cmca

Indexing 271

271 Indexing

46 74 Ima2 Imma

36 40 63 Cmc21 Ama2 Cmcm

39 67 Abm2 Cmma

20 C2221

23 24 44 71 I222 I212121 Imm2 Immm

21 35 38 65 C222 Cmm2 Amm2 Cmmm

52 Pnna

56 Pccn

60 Pbcn

61 Pbca

48 Pnnn

54 Pcca

50 Pban

33 62 Pna21 Pnma

34 58 Pnn2 Pnnm

32 55 Pba2 Pbam

30 53 Pnc2 Pmna

29 57 Pca21 Pbcm

27 49 Pcc2 Pccm

31 59 Pmn21 Pmmn

26 28 51 Pmc21 Pma2 Pmma

19 P212121

18 P21212

17 P2221

16 25 47 P222 Pmm2 Pmmm

Tetragonal

142 I41/acd

110 I41cd

141 I41/amd

109 122 I41md I-42d

108 120 140 I4cm I-4c2 I4/mcm

88 I41/a

80 98 I41 I4122

79 82 87 97 107 119 121 139 I4 I-4 I4/m I422 I4mm I-4m2 I-42m I4/mmm

130 P4/ncc

126 P4/nnc

133 P42/nbc

103 124 P4cc P 4/mcc

104 128 P4nc P 4/mnc

106 135 P42bc P 42/mbc

137 P42/nmc

138 P42/ncm

134 P42/nnm

125 P4/nbm

114 P-421c

105 112 131 P42mc P-42c P42/mmc

Indexing 272

272 Indexing

102 118 136 P42nm P-4n2 P42/mnm

101 116 132 P42cm P-4c2 P42/mcm

100 117 127 P4bm P-4b2 P4/mbm

86 P42/n

85 129 P4/n P4/nmm

92 96 P41212 P43212

94 P42212

76 78 91 95 P41 P43 P4122 P4322

77 84 93 P42 P 42/m P4222

90 113 P4212 P-421m

75 81 83 89 99 111 115 123 P4 P-4 P4/m P422 P4mm P-42m P-4m2 P4/mmm

Trigonal & Hexagonal

161 167 R3c R-3c

146 148 155 160 166 R3 R-3 R32 R3m R-3m

184 192 P6cc P6/mcc

159 163 186 190 194 P31c P-31c P63mc P-62c P63/mmc

158 165 185 188 193 P3c1 P-3c1 P63cm P-6c2 P63/mcm

169 170 178 179 P61 P65 P6122 P6522

144 145 151 152 153 154 171 172 180 181 P31 P32 P3112 P3121 P3212 P3221 P62 P64 P6222 P6422

173 176 182 P63 P63/m P6322

143 147 149 150 156 157 162 164 168 174 175

177 183 187 189 191

P3 P-3 P312 P321 P3m1 P31m P-31m P-3m1 P6 P-6 P6/m

P622 P6mm P-6m2 P-62m P6/mmm

Cubic

228 Fd-3c

219 226 F-43c Fm-3c

203 227 Fd-3 Fd-3m

210 F4132

196 202 209 216 225 F23 Fm-3 F432 F-43m Fm-3m

230 Ia-3d

220 I-43d

206 Ia-3

214 I4132

197 199 204 211 217 229 I23 I213 Im-3 I432 I-43m Im-3m

222 Pn-3n

218 223 P-43n Pm-3n

201 224 Pn-3 Pn-3m

205 Pa-3

212 213 P4332 P4132

198 208 P213 P4232

195 200 207 215 221 P23 Pm-3 P432 P-43m Pm-3m

23.9 ... Indexing Equations - Background

a, b and c lattice vectors can be converted to Cartesian coordinates with a collinear with the
Cartesian x axis and b coplanar with the Cartesian x-y plane as follows:

Indexing 273

273 Indexing

a = ax i b = bx i + by j c = cx i + cy j + cz k (23-3)

where

ax = a

bx = b cos(), by = b sin()

cx = c cos(), cy = c (cos() – cos() cos()) / sin(), cz
2 = c2 − (cx)2– (cy)2

a, b, c are the lattice parameters and , ,  the lattice angles. The reciprocal lattice vectors A,
B, and C calculated from the lattice vectors of Eq. (14-3) become:

A = Ax i + Ay j + Az k B = By j + Bz k C = Cz k

The equation relating d-spacing dhkl to hkl in terms of the reciprocal lattice parameters is:

𝑋ℎℎℎ2 + 𝑋𝑘𝑘𝑘2 + 𝑋𝑙𝑙𝑙
2 + 𝑋ℎ𝑘ℎ 𝑘 + 𝑋ℎ𝑙ℎ 𝑙 + 𝑋𝑘𝑙𝑘 𝑙 = 1 𝑑ℎ𝑘𝑙

2⁄ (23-4)

where

𝑋ℎℎ = 𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2

𝑋𝑘𝑘 = 𝐵𝑦
2 + 𝐵𝑧

2

𝑋𝑙𝑙 = 𝐶𝑧
2

𝑋ℎ𝑘 = 2𝐴𝑦𝐵𝑦 + 2𝐴𝑧𝐵𝑧

𝑋ℎ𝑙 = 2𝐴𝑧𝐶𝑧

𝑋𝑘𝑙 = 2𝐵𝑧𝐶𝑧

Charge-flipping 274

274 Charge-flipping

24. CHARGE-FLIPPING
The charge-flipping method of Oszlányi & Süto (2004) has been implemented (Coelho, 2007)
using the keywords shown in Table 24-2. Also included is the use of the tangent formula
(Hauptman & Karle, 1956) within the iterative charge-flipping process. Equations appearing in
charge-flipping keywords can be functions of the items shown in Table 24-1. At the end of a
charge flipping process a file with the same name as that given by cf_hkl_file is created but with
a *.FC extension. Almost all charge-flipping keywords can be equations allowing for great flex-
ibility in-regards to changing resolution etc... on the fly. Table 24-3 lists charge-flipping exam-
ples found in the CF directory.

Table 24-1. Items that can be used in charge-flipping equations

Get(Aij)
Get(alpha_sum)
Get(density)
Get(cycles_since_last_best)
Get(d_squared_inverse)
Get(initial_phase)
Get(iters_since_last_best)
Get(F000)
Get(max_density)
Get(max_density_at_cycle_iter_0)
Get(num_reflections_above_d_min)
Get(phase_difference)
Get(r_factor_1), Get(r_factor_2)
Get(threshold)

These are updated internally each charge-flip-
ping iteration or cycle or when needed.

Reserved parameter names: Cycle_Iter, Cycle, Iter, D_spacing

Macros (see TOPAS.INC)

Ramp, Ramp_Clamp, Cycle_Ramp, Tangent, Restart_CF, Pick, Pick_Best

Out_for_cf(file) : Outputs the A matrix from a Pawley refinement for use in charge flipping;
uses cf_in_A_matrix. See example CF-CIME-PAWLEY.INP.

Table 24-2. Keywords that can be used in charge-flipping.

charge_flipping Default

 [a !E b !E c !E [al !E] [be !E] [ga !E] al = be = ga = 90
 [cf_hkl_file $file]
 [cf_in_A_matrix $file]
 [scale_Aij !E] Get(Aij)^2
 [break_cycle_if_true !E]
 [delete_observed_reflections !E]
 [extend_calculated_sphere_to !E]
 [f_atom_type $type f_atom_quantity !E]...
 [find_origin !E] 1

Charge-flipping 275

275 Charge-flipping

 [fraction_density_to_flip !E] 0.75
 [fraction_reflections_weak !E] 0
 [min_d !E] 0
 [min_grid_spacing !E]
 [neutron_data]
 [space_group $] P1

 [use_Fc]

Electron density perturbations

[flip_equation !E]
[flip_regime_2 !E]
[flip_regime_3 !E]
[histogram_match_scale_fwhm !E]

[hm_size_limit_in_fwhm !E] 1
[hm_covalent_fwhm !E] 1

[pick_atoms $atoms]...
[activate !E] 1
[choose_from !E]
[choose_to !E]
[choose_randomly !E]
[omit !E]
[displace !E]
[insert !E]

[scale_density_below_threshold !E]
[symmetry_obey_0_to_1 !E]

Phase perturbations

 [add_to_phases_of_weak_reflections !E]
 [randomize_phases_on_new_cycle_by !E] 0
 [set_initial_phases_to $file]
 [modify_initial_phases !E]

[tangent_num_h_read !E]
 [tangent_num_k_read !E]
 [tangent_num_h_keep !E]
 [tangent_max_triplets_per_h !E] 30
 [tangent_min_triplets_per_h !E] 1
 [tangent_scale_difference_by !E] 1
 [tangent_tiny !E] 0.01

Miscellaneous

 [apply_exp_scale !E] 1
 [correct_for_atomic_scattering_factors !E] 1
 [correct_for_temperature_effects !E] 1
 [hkl_plane $hkl]...
 [randomize_initial_phases_by !E] Rand(-180,180)
 [scale_E !E] 1

Charge-flipping 276

276 Charge-flipping

 [scale_F !E] 1
 [scale_F000 !E] 0
 [scale_weak_reflections !E]
 [user_threshold !E]
 [verbose #] 1

GUI Related

 [add_to_cloud_N !E [add_to_cloud_when !E]]
 [pick_atoms_when !E]
 [view_cloud !E] 1

24.1 ... Charge-flipping usage

CF works well on data at good resolution (<1Å resolution). For data at poor resolution or for
difficult structures then inclusion of the tangent formula can facilitate solution and sharpen
electron densities, see example CF-1A7Y.INP. Powder diffraction data usually fall under the
poor resolution/data quality category and as such additional symmetry restraints using sym-
metry_obey_0_to_1 can sharpen electron densities. Example CF-ALVO4.INP demonstrates the
use of the tangent formula on powder data.

The choice and amount of perturbation necessary for finding a solution are important consid-
erations. Not enough perturbation leads to the system being trapped within a local parameter
space; too much perturbation may lead to a solution not being found and in addition contrast
in R-factors prior to and at convergence are diminished; this leads to difficult to identify solu-
tions. Many of the examples in the CF directory use the Ramp macro to gradually vary control
parameters, here are some examples:

fraction_density_to_flip = Ramp(0.85, 0.8, 100);
fraction_reflections_weak = Ramp(0.5, 0, 100);
flip_regime_2 = Ramp(1, 0, 200);
flip_regime_3 = Ramp(0.25, 0.5, 200);
symmetry_obey_0_to_1 = Ramp(0.5, 1, 100);
tangent_scale_difference_by = Ramp(0, 1, 100);

Choosing control parameters in this manner gradually decreases perturbation allowing for so-
lutions to be found and identified. This is similar-to a simulated annealing process where tem-
peratures start at high values and are then progressively lowered.

24.1.1 Perturbations

Perturbations can be categorized as being of either phase, structure factor intensity or elec-
tron density perturbations as shown in Table 24-2. There are two built in flipping regimes,
flip_regime_2 and flip_regime_3, and one user defined regime flip_equation. Only one can be
used, and they all modify the electron density. In the absence of a flipping regime, the following
is used where  corresponds to the electron density threshold.

𝜌 = {
−𝜌 𝑓𝑜𝑟 𝜌 < 𝛿
𝜌 𝑓𝑜𝑟 𝜌 ≤ 𝛿

 (24-1)

Charge-flipping 277

277 Charge-flipping

Using the tangent formula on either difficult structures or on data at poor resolution often leads
to uranium atom solutions. Uranium atom solutions can be avoided by modifying the electron
density using a flipping regime that dampens high electron densities or by using pick_atoms.

Using a large number of triplets per Eh value (a value for tangent_max_triplets_per_h greater
than 100) reduces perturbation, increases occurrences of uranium atom solutions, and in-
creases the chances of finding a solution after an initial phase randomization. A large number
of triplets, would typically be used for poor resolution data; correspondingly a flipping regime
that avoids uranium atom solutions should be chosen. Perturbations mostly increase random-
ness in the system with the exceptions of the tangent formula, scale_density_below_threshold
and histogram_match_scale_fwhm.

24.1.2 The Ewald sphere, weak reflections and CF termination

By default, CF uses the minimum observed d spacing to define the Ewald sphere; alternatively,
min_d can be used. The Ewald sphere can be increased using extend_calculated_sphere_to;
this inserts missing reflections and gives them the status of “weak”. Weak reflections are also
inserted for missing reflections within the Ewald sphere. Weak reflection phases and structure
factors can be modified using scale_weak_reflections and add_to_phases_of_weak_reflec-
tions.

Reflections that have zero intensities according to the space group are not included in CF; cor-
respondingly the number of observed reflections removed are reported. Structure factor inten-
sities within a family of reflections are determined by averaging the observed structure factors
intensities. This averaging is also performed on calculated intensities each CF iteration for
weak reflections.

Changing the space group is possible; changing the space group to a higher symmetry from
that as implied in the input hkl file often makes sense. Changing the space group to a lower
symmetry implies less symmetry and is useful for checking whether a significantly better R-
factor is realized.

Typically, a fraction of observed reflections is given the status of “weak” using fraction_reflec-
tions_weak. When a solution is found and CF terminates, a *.FC file is saved; this file comprises
structures factors that produced the best R-factor. A new CF process can be initiated with
phase information saved in the *.FC file using the Restart_CF macro. To further complete the
structure, the new CF process may for example reduce perturbations to sharpen the electron
density.

24.1.3 Powder data considerations

For powder data it is usually best to maximize the number of constraints due to poor data qual-
ity; it is also best to use *.A files as generated by a Pawley refinement and to then use
cf_in_A_matrix. No weak observed reflections within the observed Ewald sphere should be as-
signed by setting fraction_reflections_weak to zero. Instead, weak reflections can be included
by extending the Ewald sphere with something like:

Charge-flipping 278

278 Charge-flipping

extend_calculated_sphere_to 1
add_to_phases_of_weak_reflections = 90 Ramp(1, 0, 100);

If the Ewald sphere is extended such that the weak reflections are many then some of these
weak reflections could well be of high intensity. Subsequently offsetting high intensity weak
reflections by a constant could lead to too much perturbation and thus the following may be
preferential:

extend_calculated_sphere_to 1
add_to_phases_of_weak_reflections = Rand(-180,180) Ramp(1, 0, 100);

In a Pawley refinement the calculated intensities at the low d-spacing edge are often in error to
a large extent; it is therefore best to remove these reflections using delete_observed_reflec-
tions, for example:

delete_observed_reflections = D_spacing < 1.134;

A typical first try INP file template for powders is as follows:

macro Nr { 100 }
charge_flipping

cf_in_A_matrix PAWLEY_FILE.A
space_group $
a # b # c al # be # ga #
delete_observed_reflections = D_spacing < #;
extend_calculated_sphere_to #
add_to_phases_of_weak_reflections = 90 Ramp(1, 0, Nr);
flip_regime_2 = Ramp(1, 0, Nr);
symmetry_obey_0_to_1 = Ramp(0.5, 1, Nr);
Tangent(0.3, 30)
min_grid_spacing 0.3
load f_atom_type f_atom_quantity { ... }

24.1.3.1....... Powder data, the A matrix and the Tangent formula

In the case of charge-flipping from powder data TOPAS uses the diagonally normalized A-ma-
trix cf_in_A_matrix (see example CF\CF-CIME.INP), which we will call D, from a Pawley refine-
ment (see example CF\CF-CIME-PAWLEY.INP) to modify normalized structure factors Eh calcu-
lated during the charge-flipping process; this produces better results than using reflections
output in a SHELX format (Whitfield & Coelho, 2016). Equation (24-2) shows how the structure
factors are modified.

𝐄ℎ,𝑐𝑎𝑙𝑐,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 𝐄ℎ,𝑐𝑎𝑙𝑐√
𝐼𝑜𝑏𝑠,ℎ,𝑤

𝐼𝑐𝑎𝑙𝑐,ℎ,𝑤

where 𝐼𝑐𝑎𝑙𝑐,ℎ,𝑤 = ∑ Dℎ,𝑘
2

𝑘 𝐼𝑐𝑎𝑙𝑐,𝑘 and 𝐼𝑜𝑏𝑠,ℎ,𝑤 = ∑ Dℎ,𝑘
2

𝑘 𝐼𝑜𝑏𝑠,𝑘

(24-2)

The subscripts h and k correspond to reflections h and k respectively and the summation in k
is over all reflections. Icalc,k and Iobs,k corresponds to observed and calculated intensities. Equa-
tion (1) modifies the calculated intensities to include intensities from overlapping peaks.

Charge-flipping 279

279 Charge-flipping

When there’s no overlap Di,i=1 and Di,j=0 and the calculated intensities as well as Eh are not
modified. When using the direct-methods tangent formula within the charge-flipping process
as described by Coelho (2007), the D matrix is also used to modify Eh values used in triple
phase relationships as shown in equation (2).

𝐸𝑜𝑏𝑠,ℎ,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 𝐸𝑜𝑏𝑠,ℎ𝑞ℎ + 𝐸𝑐𝑎𝑙𝑐,ℎ(1 − 𝑞ℎ)

where 𝑞ℎ = ∑ Dℎ,𝑘
2

𝑘

(24-3)

Eobs,h and Ecalc,h corresponds to tangent formula Eh values calculated from the observed and
calculated intensities respectively. Ecalc,h is typically not used in the tangent formula, however,
intensities used for determining Eobs,h can be grossly in error due to peak overlap. Equation (2)
therefore influences triple phase relationships by weighing Eobs,h by qh; when there’s no overlap
qh=1 resulting in no modification. When there’s significant overlap then qh is small and the in-
fluence of triple phase relationships using the h reflection is reduced. Equation (2) also in-
cludes a (1-qh) portion of Ecalc,h thus stating that when there’s significant overlap the calculated
Eh is to be more trustworthy than the observed Eh. Equation (24-3) corrects for errors in Eh when
Iobs is similar-to Icalc; this assists in reducing the goodness of fit value thus enhancing the
chances of solving the structure.

24.1.3.2....... The algorithm of Oszlányi & Süto (2005) and F000

Normalized structure factors enhance the chances of finding a solution (Oszlányi & Süto,
2006) and are realized by inclusion of f_atom_type’s and when correct_for_temperature_ef-
fects is non-zero. Example CF-1A7Y-GABOR.INP implements the algorithm of Oszlányi & Süto
(2005) with normalized structure factors. In the original algorithm the amount of charge flipped
is a function of the maximum electron density; this can be realized using:

user_threshold = 0.2 Get(max_density_at_cycle_iter_0);

Get(max_density_at_cycle_iter_0) is a different value at the start of each CF process as phases
are chosen randomly. An alternative means of defining the threshold is:

fraction_density_to_flip 0.83

The CF process is sensitive to the threshold value. A value of 0.83 for fraction_density_to_flip
is optimum for 1A7Y and produces a solution in ~1000 iterations. A solution is not found how-
ever at 0.75 or 0.85. To overcome this sensitivity the fraction_density_to_flip parameter could
be ramped as a function of iteration from a high value to a low value, or,

fraction_density_to_flip = Ramp(0.85, 0.8, 100);

Implementation of such a ramp solves 1a7y in ~2000 iterations.

F000 is allowed to float when scale_F000 is set to 1. In the Oszlányi & Süto (2005) algorithm, a
floating F000 produces the best results for some structures but not for others (see section
24.2.3). When the electron density is perturbed then a floating F000 often produces unfavour-
able oscillations in R-factors. In general, the electron density is best left unperturbed when

Charge-flipping 280

280 Charge-flipping

scale_F000 is non-zero. Example CF-1A7Y-GABOR.INP does not seem to solve at a lower reso-
lution, try for example:

delete_observed_reflections = D_spacing < 1.1;

On the other hand, when scale_F000 is zero then electron density perturbations are possible;
CF_1A7Y.INP solves 1A7Y at 1.1 Angstrom (include “delete_observed_reflections = D_spacing
< 1.1”); CF_1A7Y.INP uses flip_regime_2 and the tangent formula.

24.2 ... Charge-flipping Investigations / Tutorials

The effects of CF keywords can be investigated by inclusion/exclusion of keywords or by chang-
ing equations. This section lists some investigative examples and highlights the use of key-
words necessary to solve examples found in the CF directory.

24.2.1 Preventing uranium atom solutions using pick_atoms

Example CF-1A7Y-OMIT.INP uses pick_atoms to modify the peaks of the highest intensity at-
oms, or,

pick_atoms * choose_to 5 omit = Rand(1, 1.1);

This example additionally uses the tangent formula and 1A7Y solves in ~100 iterations and with
a large contrast in R-factors before and at convergence. Another means to modify the peaks
are:

pick_atoms * choose_to 5 insert = Rand(-.1, 1);

The insert case is slightly slower than the omit case as the 5 atoms are first omitted before
insertion. Each case however solves 1A7Y in a similar number of iterations.

Example CF-1A7Y-NO-TANGENT.INP is similar but without the tangent formula, 1A7Y in this
case solves in ~1000 iterations.

24.2.2 The tangent formula on powder data

In CF-ALVO4.INP comment out the Tangent line as follows:

‘ Tangent(.5, 50)

Run CF-ALVO4.INP and turn on Octahedra viewing in the OpenGL window. Visual inspection of
picked atoms should show electron densities that are not recognizable as correct solutions.

Include the Tangent line and rerun; after a minute or two and at the bottom of the Ramps visual
inspection of picked atoms should show a well-defined solution.

Thus, use of the tangent formula assists in solving CF-ALVO4.INP.

Charge-flipping 281

281 Charge-flipping

24.2.3 Pseudo symmetry – 441 atom oxide

CF works well on pseudo symmetric structures (Oszlányi et al., 2006). Example CF-PN-02.INP
is an oxide structure that contains 441 atoms in the asymmetric unit (Lister et al., 2004); run
CF to convergence. Pick atoms and turn on Octahedra viewing; all polyhedra should be well
formed. Thus, CF works extremely fast and trivializes the solving of such structures. The con-
tents of the INP file is as follows:

charge_flipping
cf_hkl_file 020pn.hkl
space_group Pn
a 24.1332 b 19.5793 c 25.1091 be 99.962
fraction_reflections_weak 0.4
symmetry_obey_0_to_1 0.3
Tangent(0.25, 30)
load f_atom_type f_atom_quantity {

MO = 42 2;
P = (126 - 42) 2;
O = (441 - 126) 2;

}

The tangent formula is used to assist symmetry_obey_0_to_1 and to assist in finding the solu-
tion faster; it is not necessary however for this example. The Oszlányi & Süto (2005) algorithm
can be used by replaceing symmetry_obey_0_to_1 and the Tangent line with the following:

scale_F000 1
fraction_reflections_weak 0.4
add_to_phases_of_weak_reflections 90
user_threshold = 0.15 Get(max_density_at_cycle_iter_0);

Slow convergence is observed due to the use of F000. This is opposite to the case of 1a7y in
CF-1A7Y-GABOR.INP where F000 is necessary. Setting scale_F000 to zero greatly increases the
rate of convergence.

24.2.4 Origin finding and symmetry_obey_0_to_1

When symmetry_obey_0_to_1 is defined origin finding is performed each iteration of charge
flipping. Symmetry elements of the space group are used in finding an origin. On finding an
origin the electron density is shifted to a position that best matches the symmetry of the space
group. Additionally, a restraint is placed on the electron density pixels forcing symmetry to be
obeyed.

Run CF-AE14.INP to convergence; notice the P-1 symmetry. Remove symmetry_obey_0_to_1
and run to convergence; the origin should now be arbitrary.

24.2.5 symmetry_obey_0_to_1 on poor resolution data

Run CF-AE5.INP until a solution is found; terminate CF, this saves the phase information to the
file AE5.FC. Copy AE5.FC to AE5-SAVE.FC. Place the following lines into the file CF-AE5-
POOR.INP:

Charge-flipping 282

282 Charge-flipping

set_initial_phases_to ae5-save.fc
randomize_initial_phases_by 0

This simply starts CF with optimum phase values. Also include the following line:

symmetry_obey_0_to_1 0.75

Run CF-AE5-POOR.INP; the atom positions after picking should visually produce the correct
result. Comment out symmetry_obey_0_to_1 and rerun CF-AE5-POOR.INP. R-factors should
diverge and picked atoms should show a non-solution. Thus, symmetry_obey_0_to_1 assists
in solving CF-AE5-POOR.INP.

Include symmetry_obey_0_to_1 and remove set_initial_phases_to and randomize_ini-
tial_phases_by and then rerun CF-AE5-POOR.INP. A solution should be obtained in a few
minutes. Note that in this example the default flipping regime leads to regular occurrences of
uranium atom solutions; this can be trivially ascertained by viewing the electron density. To
reduce the occurrences of uranium atom solutions the following flipping regime is used:

flip_regime_3 0.5

24.2.6 Sharpening clouds - extend_calculated_sphere_to

Example CF-AE9-POOR.INP demonstrates the limit to which the present CF implementation
can operate. Single crystal data is purposely chosen to isolate resolution effects and not inten-
sity errors. The tangent formula is critical where without it the CF process is extremely per-
turbed and unstable. ‘flip_regime_3 0.5’ is used due to occurrences of uranium atom solutions.

There are no ramps, instead the CF process is restarted when the R-factor fails to decrease for
100 consecutive iterations, or,

break_cycle_if_true = Get(iters_since_last_best) > 100;
randomize_phases_on_new_cycle_by = Rand(-180, 180);

Half of the observed reflections are considered weak and additionally missing reflections up
to 1 Angstrom are included and considered weak using:

fraction_reflections_weak 0.5
extend_calculated_sphere_to 1

The intensities of weak reflections are left untouched and instead a Pi/2 phase shift is ran-
domly applied to ~30% of weak reflections as follows:

add_to_phases_of_weak_reflections = If(Rand(0, 1) < .3, 90, 0);

A symmetry_obey_0_to_1 of 0.7 is used not merely to find an origin but rather to prevent the
electron density from straying.

Run CF-AE9-POOR.INP and a solution should be clearly recognizable after a few minutes.
Change/remove keywords and rerun to view effects. Examples CF-CIME-POOR.INP and CF-
AE5-POOR.INP are similar.

Charge-flipping 283

283 Charge-flipping

24.2.7 A difficult powder, CF-SUCROSE.INP

CF-SUCROSE.INP without scale_density_below_threshold=0 exhibits large oscillations in R-
factors resulting in difficult to identify solutions; this can be prevented by increasing the
amount of charge flipped and including scale_density_below_threshold=0, for example

fraction_density_to_flip 0.83
scale_density_below_threshold 0

When scale_density_below_threshold=0 is used the percentage of charge that is less than the
threshold before the application of scale_density_below_threshold is reported; the difference
between this reported value and (1-fraction_density_to_flip) gives the flipped pixels that sur-
vived scale_density_below_threshold. At fraction_density_to_flip of 0.83 approximately 23%
of pixels survives scale_density_below_threshold=0 which in effect means that only 23% of
pixels are flipped out of the original 83%.

The following can be used to omit 30% of atoms:

pick_atoms *
activate = Cycle_Iter == 0;
insert = If(Rand(0, 1) > 0.3, 10, 0);

Note that atoms are inserted at an intensity that is 10 times the average intensity. This in-
creases the weight of inserted atoms relative to electron density noise. It also initially gives
more weight to weak reflections.

Use of scale_density_below_threshold often results in CF requiring more iterations to solution;
a solution however is preferable to no solution.

24.2.8 Increasing contrast in R-factors

The act of flipping introduces an appreciable amount of unwanted high frequencies in the
structure factors. This effect can be reduced by dampening high frequencies using ap-
ply_exp_scale which is ON by default. apply_exp_scale changes R-factors and not phases, di-
rections taken by CF are unchanged.

Run CF-1A7Y.INP until convergence. The difference in R-factors before and at convergence
should be ~0.39 (i.e. 0.81 and 0.42). Turn OFF apply_exp_scale by including the following line:

apply_exp_scale 0

Rerun CF-1A7Y.INP until convergence. The difference in R-factors before and at convergence
should now be ~0.29 (0.81 and 0.52). Thus apply_exp_scale increases contrast in R-factors.
Note that most of the increase seems to be realized from d-spacings less than 1 Angstrom.

24.3 ... Charge Flipping and neutron_data

neutron_data informs the charge flipping routine that neutron scattering lengths are to be
used. It also results in the following default neutron flipping routine being used:

Charge-flipping 284

284 Charge-flipping

flip_equation =
If(And(Get(density)< Get(threshold),Get(density) > 0.4 Get(min_density)),

-Get(density),
 Get(density)

);

flip_neutron can be used to change the 0.4 value occurring in the above equation, for example:

flip_neutron = 0.5;

The tangent formula is made less accurate due to the negative scattering of H atoms. However,
if positive scattering lengths are dominant then the tangent formula can stabilize refinement.
For example (see TEST_EXAMPLES\CF\NEUTRON-CIME\CF-NEUTRON.INP), try:

Tangent(0.3, 30) tangent_scale_difference_by = Ramp(1, 0, Nc);

24.4 ... Charge-flipping Examples

Table 24-3. Examples found in the CF directory. Number of atoms corresponds to the num-
ber of non-hydrogen atoms within the asymmetric unit.

Single crystal data Num atoms in asymmetric unit Space group

CF-1A7Y.INP
CF-1A7Y-GABOR.INP
CF-1A7Y-OMIT.INP
CF-1A7Y-NO-TANGENT.INP

314

P1

CF-AE14.INP 43 P-1

CF-AE5.INP
CF-AE5-POOR.INP

23 C2/c

CF-AE9.INP
CF-AE9-POOR.INP

53 P-1

CF-GEBAA.INP 17 P41212

CF-PN-02.INP 441 Pn

CF-YLIDM.INP 17 P212121

Powder data

CF-ALVO4.INP
CF-ALVO4-PAWLEY.INP

18 P-1

CF-CIME-PAWLEY.INP
CF-CIME.INP
CF-CIME-HISTO.INP
CF-CIME-POOR.INP
CF-CIME-POOR-HISTO.INP

17

P21/a

CF-SUCROSE.INP
CF-SUCROSE-PAWLEY.INP

23 P21

Charge-flipping 285

285 Charge-flipping

24.5 ... Keywords in detail

[add_to_cloud_N !E]
[add_to_cloud_when !E]

The current cloud is added to the GUI cloud creating a running average cloud for display
purposes. add_to_cloud_N corresponds to the number of most recent clouds to include in
the running average. add_to_cloud_when determines when the current cloud is to be in-
cluded in the running average; here’s an example:

add_to_cloud_N 10 add_to_cloud_when = Mod(Cycle_Iter, 2);

Averaged clouds eliminate noise and is effective if the cloud remains stationery which is
generally the case. Note that add_to_phases_of_weak_reflections can produce transla-
tions of the cloud and should not be included when averaging clouds.

[add_to_phases_of_weak_reflections !E]

Allows for modification to phases of weak reflections. For example, to add /2 to the
phases of weak reflections then the following could be used:

add_to_phases_of_weak_reflections 90

When add_to_phases_of_weak_reflections is defined then the intensities of weak reflec-
tions are not set to zero; instead they are left untouched meaning that their intensities are
set to the values as determined by the inverse Fourier transform. See also scale_weak_re-
flections.

[apply_exp_scale !E]

Determines a and b each CF iteration such that the following is a minimum:

R-factor = ∑| a Exp(b / D_spacing^2) Fc – Fo |

where Fc and Fo are the calculated and observed moduli respectively. Use of ap-
ply_exp_scale corrects R-factors in case of an incorrect temperature factor correction as
applied when normalizing structure factors. Use of apply_exp_scale typically increases the
difference between R-factors prior to and at convergence. apply_exp_scale is used by de-
fault, setting it to zero prevents its use.

[cf_hkl_file $file]

Defines the input hkl file.

[cf_in_A_matrix $file [scale_Aij !E]]

Data input is from a file created using out_A_matrix from a previous Pawley refinement.
The correlations in $file are used to partition intensities during each iteration of charge-
flipping. This partitioning is applied to structure factors as used by CF and as used by the
tangent formula. scale_Aij can be used to modify the A matrix off-diagonal coefficients,
here are some examples:

Charge-flipping 286

286 Charge-flipping

scale_Aij = Get(Aij);
scale_Aij = Get(Aij)^2; ‘ The default
scale_Aij = 0; ‘ Equivalent to using a Pawley generated hkl file

CF on powder data can also be initiated using standard hkl files.

[break_cycle_if_true !E]

Interrupts charge flipping to execute randomize_phases_on_new_cycle_by. Cycle_Iter is
set to zero and Cycle is incremented.

[correct_for_atomic_scattering_factors !E]

Structure factors are normalized when correct_for_atomic_scattering_factors is non-zero
and when f_atom_type’s are defined. Structure factors are normalized by default.

[correct_for_temperature_effects !E]

Attempts to remove isotropic temperature effects from the structure factors. cor-
rect_for_temperature_effects is ON by default, setting it to zero will prevent this correction.
Normalized structure factors are realized when correct_for_temperature_effects is ON and
the unit cell contents is defined using f_atom_type and f_atom_quantity.

[delete_observed_reflections !E]

Reflections are deleted before entering CF according to delete_observed_reflections; it
can be a function of D_spacing, for example:

delete_observed_reflections = D_spacing < 1.1;

Once deleted, observed reflections cannot be reinstated by changing min_d.

[extend_calculated_sphere_to !E]

Used to sharpen electron density clouds by filling in missing reflections; added reflections
are given the status of “weak”. extend_calculated_sphere_to can be used in conjunction
with scale_weak_reflections and add_to_phases_of_weak_reflections to modify “weak”
reflection magnitudes and phases respectively (see section 24.2.6); here’s an example:

extend_calculated_sphere_to 1
add_to_phases_of_weak_reflections = If(Rand(0, 1) < .3, 90, 0);

[f_atom_type $type f_atom_quantity !E]...

Defines atom types and number of atoms within the unit cell; used by the tangent formula
in determining Eh values and by the OpenGL display for picking atoms. For the tangent for-
mula then relative quantities are important.

Charge-flipping 287

287 Charge-flipping

[find_origin !E]

If defined and non-zero, then origin finding is turned ON. symmetry_obey_0_to_1 defines
find_origin by default. symmetry_obey_0_to_1 can be used without find_origin by defining
and setting find_origin to zero.

[flip_equation !E]

Allows for a user defined flip; here’s an example:

flip_equation = If(Get(density)<Get(threshold),-Get(density), Get(density));

[flip_regime_2 !E]

The elctron density is modified according to Eq. (24-1) and then further modified using:

𝜌 = 𝜌 − 𝐺𝑒𝑡(flip_regime_2)𝜌3/𝜌𝑚𝑎𝑥
2

flip_regime_2 is typically ramped from 1 to 0.

[flip_regime_3 !E]

The electron density is modified according to Eq. (24-1) and then further modified using:

𝜌 = {
𝜌, for 𝜌 < 𝛿

𝑀𝑖𝑛(𝜌, 𝜌𝑚𝑎𝑥Get(flip_regime_3)), for 𝜌 ≥ 𝛿

A value of 0.5 for flip_regime_3 introduces little perturbation whilst reducing the occur-
rence of uranium atom solutions. It is recommended that flip_regime_3 be used in cases
where flip_regime_2 produces uranium atom solutions. An additional perturbation, such
as “add_to_phases_of_weak_reflections=90;” may be necessary.

[fraction_density_to_flip !E]

The amount of charge flipped is fractionally based. A value of 0.6, for example, sets the
threshold  such that the sign of the lowest 60% of charge is changed. Get(threshold) can
be used to retrieve .

[fraction_reflections_weak !E]

Defines the fraction of observed reflections to flag as “weak”. When scale_weak_reflec-
tions, add_to_phases_of_weak_reflections and extend_calculated_sphere_to are all not
defined then intensities of weak reflections are set to zero effectively removing them from
the charge flipping process. Otherwise, intensities of weak reflections are not set to zero;
instead, they are left untouched prior to scale_weak_reflections and
add_to_phases_of_weak_reflections and space group family averaging.

[histogram_match_scale_fwhm !E]
[hm_size_limit_in_fwhm !E]
[hm_covalent_fwhm !E]

Charge-flipping 288

288 Charge-flipping

An implementation of Histogram Matching (bBaerlocher et al., 2007) where the distribution
of pixels within the unit cell is restrained to one that matches Gaussian atoms with inten-
sities corresponding to the atoms defined by f_atom_type‘s. The Histogram matching op-
eration is performed when histogram_match_scale_fwhm evaluates to a non-zero value.
Subsequently the full width at half maximum (FWHM) of the Gaussians (obtained from the
file ATOM_RADIUS.DEF) is scaled by histogram_match_scale_fwhm.
hm_size_limit_in_fwhm corresponds to the extent to which the Gaussians are calculated
in units of FWHM. Covalent radii are used if hm_covalent_fwhm evaluates to a non-zero
value otherwise ionic radii are used. Example usage is as follows:

histogram_match_scale_fwhm = If(Mod(Cycle_Iter, 3), 0, 1);
hm_size_limit_in_fwhm 1
hm_covalent_fwhm 1

Reported on is the fraction of pixels modified; values of 1 for both histo-
gram_match_scale_fwhm and hm_size_limit_in_fwhm seem optimal where typically ~15
to 20% of pixels are modified. Use of histogram matching should produce R-factors at con-
vergence that are equal to or than less R-factors produced when not using histogram
matching. Histogram matching sharpens the electron density cloud for data at poor reso-
lution (see examples CF-CIME-HISTO.INP and CF-CIME-POOR-HISTO.INP).

[min_d !E]

Determines in Å the resolution of observed reflections to work with; only observed reflec-
tions with a d-spacing above min_d are considered. min_d is evaluated each CF iteration.
Get(num_observed_reflections_above_d_min) is updated when a change in min_d is de-
tected. See also extend_calculated_sphere_to and delete_observed_reflections.

[min_grid_spacing !E]

If defined, then the grid spacing used is set to the smaller of min_d/2 and min_grid_spacing;
useful for obtaining many grid points for graphical purposes.

[neutron_data]

Signals that the input data is of neutron type. Used in the picking of atoms and additionally
Eh values are not corrected from any defined f_atom_type and f_atom_quantity keywords.

[pick_atoms $atoms]...
[activate !E]
[choose_from !E]
[choose_to !E]
[choose_randomly !E]
[omit !E]
[displace !E]
[insert !E]

pick_atoms modifies the electron density based on picked atoms. $atom corresponds to
the atom types to be operated on; it can contain the wild card character ‘*’ and the negation

Charge-flipping 289

289 Charge-flipping

character ‘!’, see section 20.26 for details. The operations of pick_atoms are invoked when
activate evaluates to a non-zero value, for example,

pick_atoms “O C”
activate = Mod(Cycle_Iter, 20) == 0;

The picking routine attempts to locate the atom types found in $atom based on the inten-
sities of picked atoms and the scattering power of the atoms defined in f_atom_type. For
example,

load f_atom_type f_atom_quantity { Ca 2 O 10 C 12 }
pick_atoms “O C”

Here two Ca atoms are first picked and then 10 O atoms and then 12 C atoms. The picked
atoms operated on will be the O and C atoms with the Ca atoms ignored.

choose_from and choose_to can be used to limit the number of atoms operated on. Note,
that picked atoms within pick_atoms are sorted in decreasing intensity order. For example,
to not operate on the first three O atoms and the last 2 C atoms then the following could be
used:

choose_from 4
choose_to 20

choose_randomly further reduces the atoms operated on and is executed after
choose_from and choose_to.

omit removes operated-on-atoms from the electron density. Atoms can be partially re-
moved by setting omit to values less than 1. Values greater than 1 can also be used, the
effect is to change the sign of the electron density. omit operating on a few of the highest
intensity atoms is an extremely effective means of preventing the occurrence of uranium
atom solutions, see CF-1A7Y-OMIT.INP; for example:

pick_atoms *
choose_to 5
omit = Rand(1, 1.1);

Omitting atoms randomly is a technique referred to as “random omit maps” in ShelXD,
(Schneider and Sheldrick, 2002).

insert inserts operated on atoms; a value of 1 inserts the atoms with an intensity that is
equal to the average of the picked atoms. Values of less than 1 decreases the intensity of
the inserted atoms. When insert is defined then omit is internally defined if it does not al-
ready exist. Thus, atoms are removed before insertion by default.

displace displaces in Å atom positions from their picked positions; it is evaluated before
insert. For example, to randomly displace atoms by 0.3 Å then the following could be used:

displace = Rand(0.4, 0.6);
insert 1

Charge-flipping 290

290 Charge-flipping

There can be more than one occurrence of pick_atoms, for example to limit uranium atom
solutions then the following can be used:

pick_atoms *
choose_to 5
insert = Rand(-.1, 1);

To randomly remove a further ~33% of atoms then the following could be used:

Break_cycle_if_true = Get(iters_since_last_best) > 10;
pick_atoms *

activate = Cycle_Iter == 0;
insert = If(Rand(0, 1) > 0.33, 10, 0);

Note that in this example atoms are inserted at ten times the average picked intensity; this
simply gives more weight to picked atoms relative to electron density noise. Additionally
weak reflections are also given more weighting.

[pick_atoms_when !E]

Atoms are picked in the OpenGL display when pick_atoms_when evaluates to a non-zero
value, here’s an example:

pick_atoms_when = Mod(Cycle_Iter + 1, 10) == 0;

Note that picking can be manually initiated from the Cloud dialog of the OpenGL display. A
text description of picked atoms can be obtained by opening the “Temporary output” text
window of the OpenGL window.

[randomize_initial_phases_by !E]

Initializes phases. To start a process with already saved phase information then the follow-
ing could be used:

set_initial_phases_to aleady_saved.fc
randomize_initial_phases_by 0 ‘ this has a default of 0

[randomize_phases_on_new_cycle_by !E]

randomize_phases_on_new_cycle_by = Rand(-180, 180); ‘ an example

[scale_density_below_threshold !E]

Electron density pixels that are less than the threshold value are scaled by scale_den-
sity_below_threshold. Values for scale_density_below_threshold that are less than 1 tends
to sharpen the electron density and to reduce large oscillations in R-factors; the latter oc-
curs for bad data, see example CF-SUCROSE.INP. A value of zero for scale_density_be-
low_threshold results in “low density elimination” similar to that of Shiono & Woolfson
(1992).

Charge-flipping 291

291 Charge-flipping

[scale_E !E]

Normalized structure factors (Eh values) are a function of correct_for_temperature_effects
and unit cell contents. scale_E allows for an additional scaling of Eh values.

[scale_F !E]

CF works with normalized structure factors by default. scale_F is an additional scaling of
structure factors. The defualt scale_F broadens electron density peaks to avoid pixilation
effects and is given by:

scale_F = Exp(-0.2 Get(d_squared_inverse));

[scale_F000 !E]

Scale should be set to 1 for compliance with the algorithm of Oszlányi & Süto (2004). When
scale_F000 is non_zero then modifications to the electron density produces unfavourable
effects.

[scale_weak_reflections !E]

By default, weak reflection structure factors are set to zero; however, when either
scale_weak_reflections or add_to_phases_of_weak_reflections is defined then weak re-
flection structure factors are instead modified accordingly, for example:

scale_weak_reflections = Rand(-0.2, 0.4);

scale_weak_reflections or add_to_phases_of_weak_reflections can be a function of
D_spacing.

[set_initial_phases_to $file]
[modify_initial_phases !E]

Sets initial phases to those appearing in $file. Typically, $file corresponds to a *.FC file
saved in a previous charge-flipping process. modify_initial_phases is executed each CF it-
eration; it can be used to restrain the phases of $file. For example,

modify_initial_phases = Get(initial_phase) + Min(Abs(Get(phase_difference)),45);

where phase_difference corresponds to the difference between the current phase and the
initial phase; it has a value between ±90º. modify_initial_phases can be used to constrain
phases to those as determined by high resolution transmission electron microscopy
HRTEM (aBaerlocher et al., 2007).

[space_group $]

If defined, then the cf_hkl_file is assumed to comprise merged hkls corresponding to the
defined space group; otherwise, the cf_hkl_file is assumed to be of space group type P1.

Charge-flipping 292

292 Charge-flipping

[symmetry_obey_0_to_1 !E]

If a space group is defined, then symmetry is adhered to according to sym-
metry_obey_0_to_1. symmetry_obey_0_to_1 can be thought of as a real space electron
density restraint; its value should range between 0 and 1. If 1 then symmetry is obeyed
100%; if 0 then for a particular set of equivalent grid points, as determined by the equivalent
positions of the space group, an average density avg is obtained. The electron densities on
the grid points are then adjusted as follows:

new =  (1 − symmetry_obey_0_to_1) + symmetry_obey_0_to_1 avg

The text output 'symmetry error' as displayed when symmetry_obey_0_to_1 is used and is
defined as follows:

′𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑒𝑟𝑟𝑜𝑟′ =
∑|𝜌 − 𝜌𝑎𝑣𝑔|

∑|𝜌|

where the summation is over all electron density grid points. symmetry_obey_0_to_1 de-
fines find_origin by default. find_origin is applied before symmetry_obey_0_to_1.
find_origin shifts the electron density such that an approximate error in 'symmetry error' is
minimized; thus find_origin assists in the symmetry_obey_0_to_1 restraint.

[tangent_num_h_read !E]
[tangent_num_k_read !E]
[tangent_num_h_keep !E]
[tangent_max_triplets_per_h !E]
[tangent_min_triplets_per_h !E]
[tangent_scale_difference_by !E]

tangent_num_h_read and tangent_num_k_read defines the number of highest h and high-
est k reflections to read in determining triplets. tangent_num_h_keep defines the number
of highest h reflections to include for tangent formula updating. tangent_max_tri-
plets_per_h and tangent_min_triplets_per_h defines the maximum and minimum number
of triplets per reflection h. Reflections with less than tangent_min_triplets_per_h are not
included for tangent formula updating. tangent_scale_difference_by corresponds to S in
the following:

∅ℎ,𝑛𝑒𝑤 = ∅ℎ,𝑐𝑓 + 𝑆 𝛼ℎ(∅ℎ,𝑡𝑓 − ∅ℎ,𝑐𝑓)

𝑡𝑎𝑛(∅ℎ,𝑡𝑓) = 𝑇ℎ 𝐵ℎ⁄

𝑇ℎ = ∑ 𝐸ℎ𝐸𝑘𝐸ℎ−𝑘𝑠𝑖𝑛(∅𝑘 − ∅ℎ−𝑘)𝑘

𝐵ℎ = ∑ 𝐸ℎ𝐸𝑘𝐸ℎ−𝑘𝑐𝑜𝑠(∅𝑘 + ∅ℎ−𝑘)

𝑘

𝛼ℎ = 𝑀ℎ 𝑀ℎ,𝑚𝑎𝑥⁄ , 𝑀ℎ = √𝑇ℎ
2 + 𝐵ℎ

2

Charge-flipping 293

293 Charge-flipping

[user_threshold !E]

By default, Get(threshold) is determined using fraction_density_to_flip. When defined then
user_threshold overrides fraction_density_to_flip. Electron density pixels are normalized
to have a maximum value of 1, thus typical values for user_threshold range between 0 and
0.1.

[use_Fc]

Sets initial phases to those saved in a previous *.FC file. The FC file used corresponds to
the same name as the data file, defined using cf_hkl_file or cf_in_A_matrix, but with a FC
extension. use_Fc is similar-to set_initial_phases_to except that the file is implied.

[verbose #]

A value of 1 outputs text in a verbose manner. A value of 0 outputs text when the R-factor is
less that a previous value encountered within a particular Cycle.

[view_cloud !E]

Informs a detected GUI to display the electron density. Here are some examples:

view_cloud 1 ‘ Update cloud every charge-flipping iteration
view_cloud = Mod(Cycle_Iter, 10) == 0;

GUI Functionality 294

294 GUI Functionality

25. GUI FUNCTIONALITY

1.1 TOPAS is DPI aware

Monitors with a high number of Dots Per Inch (DPI), often
display text that are too small. Windows can scale fonts
using Windows font scaling to enlarge text. This scaling is
carried through to TOPAS where fonts and bitmaps scale to
the required size. Additionally, a thicker-text option
("Segoe UI Semibold") can be enabled if the TOPAS text appears too thin. The option is saved
for subsequent TOPAS loads and is enabled/disabled from the View menu:

1.2 Antialiasing and OpenGL

Enable Antialiasing on your graphics card to display smooth lines in OpenGL; this affects all
OpenGL displays. Depending on the graphics card, Antialiasing can also be enabled on a pro-
gram specific manner.

1.3 Scan-window viewing operations

The following described operation of the scan window where LMB and RMB corresponds to
Left and Right mouse buttons.

 Operation

Mouse-Wheel Scroll plots left/right

Shift Mouse-Wheel Compress/expand x-axis

LMB forwards rectangle Zoom

LMB backwards rectangle Unzoom

LMB forwards/backwards rectangle
towards 1st and 3rd quadrants

Change start/end of x-axis window depending on
proximity to window limits.

RMB click Context menu

RMB down and scroll Panning, similar to scrolling using mouse wheel

LMB click on hkl tick mark or tick
mark row

Highlight all tick marks from same phase. Display as-
sociated phase.

Mouse close to tick mark Show hkl and d-spacing on screen

Mouse close to phase line Highlights phase and associated tick marks.

1.4 Selecting files for display using grep regular expressions

Grep regular expressions can be used to simplify the selection of scans for display; this is use-
ful when there are many patterns loaded. Grep can be accessed through the “Global/Filter
scans for display” option in the TreeView pane as seen in the following:

GUI Functionality 295

295 GUI Functionality

In the above, every 100th scan is displayed using the regular expression of “_[1-9]00”.

1.5 gui_text keyword now ignored by the kernel

For the commercial version of TOPAS, the gui_text keyword allows for INP format text to be
used in GUI mode refinement. Previously, use of gui_text within INP files in Launch mode threw
an exception. Version 8 does not throw an exception; instead, the keyword is ignored but with
the INP text within the gui_text block included in the refinement. The means that INP files are
GUI mode compliant and moving between GUI and Launch mode becomes a smooth opera-
tion. For example, the following INP file can be run in both Launch and GUI modes without
modification:

XDD(ceo2)
 CuKa5(0.0001)
 Full_Axial_Model(12, 20, 12, 5.1, sl 5)
 Radius(173)
 LP_Factor(17)
 Divergence(1)
 Slit_Width(0.1)
 bkg @ 0 0 0 0 0
 Zero_Error(@, 0)
 gui_text {
 prm b0 0
 prm b1 0
 fit_obj = b0 + b1 (X2-X1) / 2;
 }
 str
 space_group F_M_3_M
 scale @ 0.001
 Cubic(@ 5.410)
 site Ce1 occ Ce+4 1 beq 1
 site O1 x 0.25 y 0.25 z 0.25 occ O-2 1 beq 1

GUI Functionality 296

296 GUI Functionality

 CS_L(@, 100)
 MVW(0,0,0)

1.6 Displaying a phase with and without background

Phases can be plotted with or without background by cycling through the three states
of the phase-display icon.

1.7 How atoms are displayed in OpenGL

Atoms colours and radii are defined in the files ATOM_COLORS.DEF and ATOM_RADIUS.DEF re-
spectively. A site defined as:

site S1 occ Al+3 1 beq 1

will be displayed as a Sulphur atom. If the Site Name, minus the numbers, is not found in
ATOM_COLOURS.DEF then the atom type defined at the first site occupancy is used. Thus, a
site defined as:

site _S1 occ Al+3 1 beq 1

will be displayed as an Aluminium atom.

1.8 Tracking atomic movements graphically

[str…]
[track_buffer !E]
[site… track !E]

Examples

TEST_EXAMPLES\ALVO4A.INP

Atomic movements can be tracked using the site dependent keyword track. For example, the fol-
lowing:

site AL1 … track = Mod(Cycle_Iter, 2) == 0;

will store the Al1 site position every second iteration. Doing this for every site in AlVO4 pro-
duces:

GUI Functionality 297

297 GUI Functionality

Saved positions are Faded with a Fade value of 4. A Fade value of 0 does nothing; a Fade value of
10 results in black atoms. The str dependent track_buffer keyword determines the number of pre-
vious atomic positions to keep; the default value is 10.

1.9 x_calculation_step deleted when constant x-axis step size
detected

*.XY and *.XYE data files are converted to a constant x-axis step size when a constant step size
is detected. When this occurs Version 7 removes the “Calc.Step” item from the GUI menus for
the corresponding data file. A small calculation step size can still be used by increasing “Conv.
Steps”. PRO files containing an x_calculation_step will still show an entry of x_calcula-
tion_step.

1.10 ... hide_peak_sticks

A GUI option that toggles the display of peak sticks in the scan window; the option can be found
at the Peaks phase level as follows:

GUI Functionality 298

298 GUI Functionality

25.1 ... User defined phase colour, line width and point size (_clp)

_clp #red #green #blue #line_width #point_size Examples

TEST_EXAMPLES\ZRO2.INP

The colour, line width and data point size of phase plots can be entered in INP files using the
phase or bkg dependent keyword _clp. The first three numbers correspond to red, green and
blue colour weightings with value ranging between 0 and 1. #line_wdith and #point_size can
be between 0 and 15. The file COLOURS.INC contains standard colours. Example usage is as
follows:

#include colours.inc
bkg …

_clp 0.5 0.5 0.5 3 2 ‘ Grey with a line width of 3 and a data point size of 2
str…

_clp 0.2 0.2 1 1 0 ‘ Blueish with a line width of 1 and a data point size of 0
 fit_obj !fs = 1000 X;

Plot_Fit_Obj(fs, Some_bkg)
 _clp Blue 2 2 ‘ Blue colour from colours.inc

25.2 ... Highlighting/displaying phases and hkl tick marks

Highlighting a phase in a multi-phase pattern or patterns, can be performed in a many ways:

- Displaying phase names on the right of the plot window and moving the mouse over the
phase name.

- Clicking on the row of the hkl tick marks. This displays the associated phase and tick marks
highlighted, for example:

If individual phases are displayed using , then moving the mouse over the pattern high-
lights the pattern as well as ticks marks associated with the phase.

GUI Functionality 299

299 GUI Functionality

If there are too many tick rows, then the program displays all phase ticks from all patterns in
one row. Moving the mouse close to a tick mark, displays tick mark information on the screen
as well as displaying the associated range name on the status bar. Additionally clicking the left
mouse button on a phase tick mark, highlights all tick marks associated with that phase addi-
tionally displays the phase pattern highlighted; for example:

hkl tick marks are also now displayed in 2D-Offset mode as seem in the following:

In 2D-offset mode, ticks marks from a particular pattern are placed on a common tick mark
row. Clicking on an individual tick mark, highlights all ticks marks from the corresponding
phase and highlights and displays the corresponding phase pattern. As in the non-2D-offset
mode, a phase pattern and its associated tick marks are highlighted when the mouse is close
to the phase pattern.

GUI Functionality 300

300 GUI Functionality

25.3 ... TOF x-axis can be displayed as d-spacing, Q or tof

The x-axis of TOF data can be displayed as either tof, d-spacing or Q by cycling the x-
axis button.

25.4 ... Surface plots – 2D with offsets

This icon displays scans offset from one another, for example (see files in the direc-
tory TEST_EXAMPLES\3D\):

The Quickzoom window is operational in all 2D-offset plots.

Pressing the Middle Mouse Button and moving the mouse changes the x and y offsets. This
movement greatly assists in determining the curvature of the surface. The QuickZoom display
is not offset allowing for two views of the same data.

25.4.1 Display hkl ticks on Surface plots

hkl ticks with z-axis height can be displayed on surface plots as seen in the following for
\TEST_EXAMPLES\JE-PARA\D8_02999_35_ANNOTATE_04.INP:

GUI Functionality 301

301 GUI Functionality

And in PlanView:

25.4.2 hkl ticks are now corrected for zero errors

The display of hkl ticks in Surface or 1D plots are now corrected for th2_offset or transform_X.
The corrected PlanView plot shown above, when uncorrected, looks like:

25.4.3 Inserting peaks and identifying scans

Peaks can be inserted by pressing the Ctrl-Key and clicking the RMB. When the Ctrl key is
pressed a solid circle is displayed on the scan closest to the mouse. The circle is coloured to
match the scan lines and in addition the closest scan is displayed with a thickened line. Dis-
played at the bottom of the plot is the name of the scan as seen by the arrow below. Peaks as
well as excluded regions move with the offsets.

GUI Functionality 302

302 GUI Functionality

When the Ctrl-Key is pressed the x and y axis values displayed on the status line are offset to
match the closest scan. Similarly, when the “For LAM Cursor” option is selected the LAM cur-
sor is changed to match the axis of the closest scan.

25.4.4 2D-offset Surface plots

2D-offset plots can be displayed as a 3D-Surface, for example:

These plots can be manipulated in real time; the 871 file TEST_EXAMPLES\JE-
PARA\D8_02999.RAW with over 4 million data points can be easily manipulated:

Pressing the Shift key whilst performing a Zoom (forming a box using the mouse) zooms into a
region. Zooming in this manner deselects scans for display. An unzoom is performed by

GUI Functionality 303

303 GUI Functionality

performing an Unzoom whilst holding down the Shift key. Colour schemes can be changed by
using the Colours options:

Contour-Orange-15 looks like:

25.4.5 2D-offset Planview plots

Moving the y-offset such that it's at a maximum automatically produces a Planview; a Kaleido-
scope colour scheme gives:

GUI Functionality 304

304 GUI Functionality

The Standard colour scheme gives:

Zooming gives:

Planview can also have x-axis offsets with line scans overlain:

These line scans can include the calculated and/or difference patterns as well as patterns for
individual phases. Beneath the displayed line scans are their shadows. Colours are blended
across scans as well as across the x-axis to sharpen images.

989694929088868482807876747270686664626058565452504846444240383634323028262422201816141210

2,700

2,600

2,500

2,400

2,300

2,200

2,100

2,000

1,900

1,800

1,700

1,600

1,500

1,400

1,300

1,200

1,100

1,000

900

800

700

600

500

400

300

200

100

GUI Functionality 305

305 GUI Functionality

25.4.6 OpenGL Surface plots

OpenGL surface plots can be displayed alongside 2D-offset plots:

The scans displayed in the chart area are displayed to the right as a surface plot. Use RMB on
the surface plot for options; these are:

The OpenGL surface plot respects the 2D x-axis and y-axis display options. It is also aware of
the QuickZoom window and scrolling. Scrolling can be performed from either the 2D or 3D dis-
plays using the Mouse Wheel. Navigation in the OpenGL window is as follows:

• Use the Moise Wheel to scroll the x-axis from either the 2D or 3D plots.

• RMB-Pressed and moving zooms.

• Pressing ‘x’ whilst rotating allows rotation around an axis vertical to the screen.

• Pressing ‘y’ whilst rotating allows rotation around an axis horizontal to the screen.

• Pressing ‘z’ whilst rotating allows rotation around an axis perpendicular to the screen.

• Pressing the Mouse Wheel button (as opposed to rotating the mouse wheel) moves the
object and hence the centre of rotation.

GUI Functionality 306

306 GUI Functionality

• When the Mouse is close to the Left or Right borders of the OpenGL window then rotation
is around an axis perpendicular to the computer screen. Very useful for positioning 3D ob-
jects.

Opening the OpenGL Text Dialog and clicking on the 3D surface writes text into the Text Dialog;
this text comprises the names of the two files bordering the polygon that has been clicked and
the average x and y values of the polygon.

25.4.7 OpenGL – Weighted difference for colours

The RMB “Weight difference for colours” option displays colours corresponding to:

WtDiff = Abs(Yobs−Ycalc) / Weighting

25.5 ... Normalizing scans within a Scan Window

Displayed scans can be normalized using the option “Yobs Normalize” which is activated us-
ing the RMB on the Scan window. Normalizing scales displayed scans such that the maximum
values of the displayed data are all equal. Normalizing is temporary and can be toggled on/off
by executing the “Yobs Normalize”. The following shows scans normalized:

25.6 ... Plotting phases above background

[fit_obj E [min_X !E] [max_X !E]]...
[fo_transform_X !E]
[fit_obj_phase !E]

By default, phases are plotted on top of background where background comprises
fit_obj’s+bkg. The xdd dependent gui_add_bkg and the fit_obj dependent fit_obj_phase can be
used to change the defaults, for example,

xdd ...
gui_add_bkg !E
fit_obj ...

fit_obj_phase !E

GUI Functionality 307

307 GUI Functionality

gui_add_bkg defaults to 1; if its zero then phases are not plotted above background.
fit_obj_phase defaults to 1. If gui_add_bkg=1 then the following is added to phases:

bkg + (and any fit_obj’s that has fit_obj_phase =1)

QUANT\QUANT-7.INP shows the use of fit_obj_phase=1 where a fit_obj that is a function of a
user_y object, that is supposed to be a phase, is plotted on top of background using a
dummt_str; the dummy_str checks the status of the fit_obj’s fit_obj_phase.

25.7 ... Plotting fit_objs

fit_obj’s can be plotted using the following macros:

macro Plot_Fit_Obj(p, name) {
 dummy_str
 phase_name name
 scale = p;
}

macro Plot_Fit_Obj(name) {
 dummy_str
 phase_name name
}

See TEST_EXAMPLES\VOIGT-APPROX\FIT-OBJ.INP for example; i.e.

xdd ...
fit_obj !f1 = ...
Plot_Fit_Obj(f1, “Fit Obj”)

Plotting is via a dummy_str with the scale parameter set to the name given to the fit_obj, which
in this case is f1. At the plotting stage the dummy_str borrows the calculated pattern from the
fit_obj. The scale parameter of the dummy_str has some intelligence built into it such that if
scale is not a function of a fit_obj name then it will search the place of the item it is a function
of for a calculated pattern. For example, in the following:

xdd ...
Plot_Fit_Obj(a, “Fit Obj”)
fit_obj = a ...

prm a ...

the ‘a’ parameter lives locally to the fit_obj as it is defined after the fit_obj. Defining the scale
parameter of the dummy_str in terms of ‘a’ therefore allows the dummy_str to determine
where to find the calculated pattern to display. In this way macros such as the PV macro can
be used and plotted without having to define a name for the fit_obj, see TEST_EXAM-
PLES\PVS.INP. Sometimes the fit_obj has no name and no parameter that belongs to it; instead
of naming the fit_obj or rearranging prm definitions the second Plot_Fit_Obj macro can be
used:

xdd ...
fit_obj = ...
Plot_Fit_Obj(“plot previously defined fit_obj”)

Here the fit_obj defined prior to Plot_Fit_Obj is plotted.

GUI Functionality 308

308 GUI Functionality

25.8 ... Display of Normalized SigmaYobs^2

This icon displays normalized SigmaYobs2; useful for checking anomalies from VCT
or XYE files; here’s an example:

The normalization is as follows:

SigmaYobs^2 displayed = SigmaYobs^2 Sum[Yobs] / Sum[SigmaYobs^2]

This puts the display of SigmaYobs^2 on a similar scale to Yobs. For normal x-ray data Sig-
maYobs = Sqrt(Yobs) and hence nothing is done as the displayed plot would simply be equal
to Yobs. On some data sets, TOF for example, the magnitude of SigmaYobs can be small;
therefore, when refining on multiple data sets from different sources, the weighting schemes
may need modification to give the desired weight to the data sets.

25.9 ... Cumulative Chi2

A kernel operation that results in the following graphical display:

Uses the weighting from the kernel which can be User defined or otherwise. SigmaYobs is
used in the weighting if it exists. The Cumulative Chi2 it is normalized to have the maximum
intensity of Yobs within the display window. Data is obtained from the kernel; excluded regions
are ignored as shown in the plot above. Tabs for Cumulative Chi2 has been included in the
appropriate GUI tabs, i.e.

8580757065605550454035302520

4

3.5

3

2.5

2

1.5

1

0.5

0

2Th (Degrees)

13012011010090807060504030

C
o

u
n

ts

50,000

40,000

30,000

20,000

10,000

0

-10,000

-20,000

GUI Functionality 309

309 GUI Functionality

25.10 . Correlation Matrix display

A Correlation matrix window activated from the Fit Dialog; it operates in Launch and GUI
modes. Example output is as follows:

Both the A-matrix and the correlation matrix include penalties/restraints depending on
whether do_errors_include_penalties and/or do_errors_include_restraints are defined. The
display of the matrix can be zoomed using Ctrl-MouseWheel, here’s an example:

GUI Functionality 310

310 GUI Functionality

MouseMove over the correlation matrix displays a Hint comprising the corresponding param-
eter name, value and error. Left Mouse button down and dragging translates the matrix.

25.11 . Fading a structure

The intensity of atom colours displayed in OpenGL can be adjusted using the Fade spin button
of the OpenGL grid options, for example:

25.12 . Normals Plot

[normals_plot !E]...
[normals_plot_min_d !E]

An OpenGL plot of lattice plane Normals with Normals lengths defined by normals_plot. For
example:

GUI Functionality 311

311 GUI Functionality

normals_plot = Abs(H * K + L^2) + 1; normals_plot_min_d 0.3

normals_plot_min_d is optional; small values (ie. 0.1) could lead to millions of points and Us-
ers could blow up their computers. Here’s output from the test example CLAY.INP:

The slider in the plot is activated by clicking on the button. This slider multiplies the length
of the normals_plot equation before generating the surface. The exact formulation for the mul-
tiplications is as follows.

Definitions:

s = multiplier which has a value (not shown to the user) that varies from 0 and 1.

N = diffraction vector directions with lengths given by the normals_plot equation.

N = Sqrt(N . N) = magnitude of N

Nmax = maximum N

Before generating the shape, N is multiplied by:

For s < 0.25

For 0.25 ≤ s < 0.5

For 0.5 < s ≤ 0.75

For 0.75 < s ≤ 1

: ((N / Nmax)^(4*s)) * N max / N

: ((N / Nmax)^(4*(0.5-s))) * Nmax / N

: (4*(0.5-s)) * Nmax / N + (1-s)

: (((4*(0.75-s)) + Nmax / N

25.13 . Improvements to the Grid

Data can be sorted by double clicking on column headings. Sorting alternates between as-
cending and descending order. On leaving a grid, the column most recently sorted is remem-
bered. On re-entry of that grid, the data is again sorted according to the saved state. A small <
or > sign is displayed to the left of the column heading name. Sorting works for all grids that

GUI Functionality 312

312 GUI Functionality

display data with rows that are similar in Type; i.e. Peak data, sites etc... Val and Error columns
are sorted numerically. Hkls, F^2 and other obvious numeric columns are also sorted numer-
ically. However, Min and Max are sorted using strings as they can be equations and hence their
fields are strings.

CTRL-MouseWheel zooms/un-zooms the text of a grid.

MouseDownMouseMove for Panning.

25.14 . Mouse operation in OpenGL Graphics

First some definitions

LMB = Left Mouse Button

RMB = Right Mouse Button

MID = Mouse Wheel or Middle button on Laptops

MM = Mouse Moving

WM = Wheel moving

LMB-D = Left Mouse Button Down

RMB-D = Right Mouse Button Down

• MW-D = Mouse Wheel Down

• For example, LMB-D-MM is simply dragging with the LMD

Image rotation/translation operations are:

• LMB-D- MM rotates the image.

• LMB-D- MM and quick release initiates continuous rotation.

• LMD-D-MM on the first 10% of the viewport from the left, or, the last 10% from the right
rotates around an axis perpendicular to the screen. This is another way of doing what Shift-
LMB-D-MM does but without the need for keyboard input.

• MW zooms in addition to the usual RMB-D-MM.

• MID-D-MM translates the image in the plane of the screen.

Images are rotated around the centre of gravity (or centre of unit cell) unless there’s a change
using the RMB-D options.

References 313

313 References

26. REFERENCES
Ainsworth, C. M.; Lewis, J. W.; Wang, C.; Johnstone, H. E.; Mendhis, B. G.; Brand, H. E. A.;

Coelho, A. A.; Evans, J.S.O. (2016). Chem. Mater. 28, 3184–3195. “3D Transition Metal Or-
dering and Rietveld Stacking Fault Quantification in the New Oxychalcogenides La2O2Cu2–

4xCd2xSe2”

aBaerlocher, C; Gramm, F.; Massüger, L; McCusker, L; He, Z; Hovmöller, S & Zou, X. (2007).
SCIENCE VOL 315 23 FEBRUARY 2007

bBaerlocher, C.; McCusker, L. B.; & Palatinus, L. (2007). Z. Kristallogr. 222, 47-53

Balzar, D. (1999). Microstructure Analysis from Diffraction, edited by R. L. Snyder, H. J. Bunge,
and J. Fiala, International Union of Crystallography, 1999. “Voigt-function model in diffrac-
tion line-broadening analysis”

Bergmann, J., Kleeberg, R., Haase, A. & Breidenstein, B. (2000). Mat. Sci. Forum, 347-349,
303-308. “Advanced Fundamental Parameters Model for Improved Profile Analysis”.

Brindley, G. W. (1945). Phil. Mag. 36, 347-369. “The effect of grain or particle size on X-ray re-
flections from mixed powders and alloys, considered in relation to the quantitative deter-
mination of crystalline substances by X-ray methods”

Broyden, C. G. (1970). J. Inst. Maths. Appl., 6, 76-90. "The Convergence of a Class of Double-
rank Minimization Algorithms"

Cagliotti, G., Paoletti, A. & Ricci, F. P. (1958). Nucl. Inst. 3, 223-228. “Choice of collimators for
a crystal spectrometer for neutron diffraction”

Cheary, R. W. & Coelho, A. (1992). J. Appl. Cryst. 25, 109-121. “A fundamental parameters ap-
proach to X-ray line-profile fitting”

Cheary, R. W. & Coelho, A. A. (1994). J. Appl. Cryst. 27 (5), 673-681. “Synthesizing and fitting
linear position-sensitive detector step-scanned line profiles”

Cheary, R. W. & Coelho, A. A. (1998a). J. Appl. Cryst. 31, 851-861. “Axial divergence in a con-
ventional X-ray powder diffractometer I. Theoretical foundations”

Cheary, R. W. & Coelho, A. A. (1998b). J. Appl. Cryst. 31, 862-868. “Axial divergence in a con-
ventional X-ray powder diffractometer II. Implementation and comparison with experi-
ment”

Cheary, R. W.; Coelho, A. A. and Cline, J. P. (2004). Journal of Research-National Institute of
Standards and Technology, 109 (2004): 1-26. "Fundamental parameters line profile fitting
in laboratory diffractometers"

Coelho, A. A. & Cheary, R. W. (1997). Computer Physics Communications, 104, 15-22. “A fast
and simple method for calculating electrostatic potentials”

Coelho, A. A. (2000). J. Appl. Cryst. 33, 899-908, "Structure Solution by Simulated Annealing"

References 314

314 References

Coelho, A. A. (2003). J. Appl. Cryst. 36, 86–95. “Indexing of powder diffraction patterns by iter-
ative use of singular value decomposition”. https://doi.org/10.1107/S0021889802019878

Coelho, A. A. (2005). J. Appl. Cryst. 38, 455-461. "A bound constrained conjugate gradient so-
lution method as applied to crystallographic refinement problems".
https://doi.org/10.1107/S0021889805006096

Coelho, A. A. (2007). Acta Cryst. A36, 400–406. “A charge-flipping algorithm incorporating the
tangent formula for solving difficult structures”.
https://doi.org/10.1107/S0108767307036112

Coelho, A. A; Evans, J.; Evans, I; Kern, A.; Parsons, S. (2011). Powder Diffraction, Vol. 26, Issue
S1, pages S22-S25, "The TOPAS symbolic computation system"

Coelho, A. A.; Chater, P.A.; Kern, A. (2015). J. Appl. Cryst. 48, Part 3, 869-875. “Fast synthesis
and refinement of the atomic pair distribution function”.
https://doi.org/10.1107/S1600576715007487

Coelho, A. A.; Evans, J. S. O. & Lewis, J. W. (2016). J. Appl. Cryst. 49, 1740-1749. "Averaging
the intensity of many-layered structures for accurate stacking-fault analysis using
Rietveld refinement". https://doi.org/10.1107/S1600576716013066

aCoelho, A. A. & Rowles, M. R. (2017). J. Appl. Cryst. 50, 1331-1340. "A capillary specimen ab-
erration for describing X-ray powder diffraction line profiles for convergent, divergent and
parallel beam geometries". https://doi.org/10.1107/S160057671701130X.

bCoelho, A. A. (2017). J. Appl. Cryst. 50 , 1323-1330. "An indexing algorithm independent of
peak position extraction for X-ray powder diffraction patterns".
https://doi.org/10.1107/S1600576717011359.

aCoelho, A. A. (2018). J. Appl. Cryst. 51, 112-123. "Deconvolution of instrument and K con-
tributions from X-ray powder diffraction patterns using least squares with penalties".
https://doi.org/10.1107/S1600576717017988.

bCoelho, A. A. (2018). J. Appl. Cryst. 51, 210-218. "TOPAS & TOPAS-Academic: An optimiza-
tion program integrating computer algebra and crystallographic objects written in c++".
https://doi.org/10.1107/S1600576718000183

cCoelho, A. A. (2018). J. Appl. Cryst. 51, 428-435. “Optimum Levenberg-Marquardt constant
determination for nonlinear least-squares". https://doi.org/10.1107/S1600576718001784

Coelho, A.A. (2021). Acta Cryst. D77, 98-107. “Ab initio structure solution of proteins at
atomic resolution using charge-flipping techniques and cloud computing”.
https://doi.org/10.1107/S2059798320015090

Coelho, A. A., Chater, P. A. & Evans, M. J. (2021). J. Appl. Cryst. 54, 444-453. “Generating the
atomic pair distribution function without instrument or emission profile contributions”.
https://doi.org/10.1107/S1600576721000765

Baerlocher, C; Gramm, F.; Massüger, L; McCusker, L; He, Z; Hovmöller, S & Zou, X. (2007).
SCIENCE VOL 315 23 FEBRUARY 2007.

https://doi.org/10.1107/S0021889802019878
https://doi.org/10.1107/S0021889805006096
https://doi.org/10.1107/S0108767307036112
https://doi.org/10.1107/S1600576715007487
https://doi.org/10.1107/S1600576716013066
https://doi.org/10.1107/S160057671701130X
https://doi.org/10.1107/S1600576717011359
https://doi.org/10.1107/S1600576717017988
https://doi.org/10.1107/S1600576718000183
https://doi.org/10.1107/S1600576718001784
https://doi.org/10.1107/S2059798320015090
https://doi.org/10.1107/S1600576721000765

References 315

315 References

Burla, C.B; Carrozzini, B.; Cascarano, G. L.; Giacovazzo C. & Polidori, G. (2011). J. Appl.
Cryst. 44, 1143–1151

Chernick, M. R. (1999). Bootstrap Methods, A Practitioner’s Guide, Wiley, New York.

David, W. I. F; Matteo, L.; Scardi, P. (2010). Materials Science Forum Vol. 651 pp 187-200

DiCiccio, T. J. & Efron, B. (1996). Bootstrap confidence intervals (with discussion), Statistical
Science 11, 189–228.

Durbin, J. & Watson, G. S. (1971). Biometrika. 58, 1-19. “Testing for Serial Correlation in Least
Square Regression, III”

Efron, B. & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals
and other measures of statistical accuracy, Statistical Science 1, 54–77.

Favre-Nicolin, V; Cerny, R. (2002). J. Appl. Cryst. 35 (6), 734-743.

Fletcher, R. (1970). Comput. J., 13, 317-322. "A New Approach to Variable Metric Algorithms"

Finger, L. W., Cox, D. E & Jephcoat, A.P. (1994). J. Appl. Cryst. 27, 892-900. “A correction for
powder diffraction peak asymmetry due to axial divergence”

Flack, H. D. (1983). Acta Cryst. A39, 876-881

Goldfarb, D. (1970). Math. Comp., 24, 23-26. “A Family of Variable Metric Updates Derived by
Variational Means”

Hauptman, H. & Karle, J. (1956). Acta Cryst. 9, 635

Hill, R. J. & Flack, H. D. (1987). J. Appl. Cryst. 20, 356-361. “The Use of the Durbin-Watson d
Statistic in Rietveld Analysis”

Hölzer, G., Fritsch, M., Deutsch, M., Härtwig, J. & Förster, E. (1997). Physical Review A, 56,
4554-4568. “K1,2 and K1,2 X-ray emission lines of the 3d transition metals”

Järvinen, M. (1993). J. Appl. Cryst. 26, 525-531. “Application of symmetrized harmonics ex-
pansion to correction of the preferred orientation effect”

Johnson, C. K. & Levy, H. A. (1974). International Tables for X-ray Crystallography, IV, 311 -
336. “Thermal-motion analysis using Bragg diffraction data”

Kopp, Joachim. (2006). Int.J.Mod.Phys. C19:523-548,2008

Leoni, M.; Di Maggio, R.; Polizzi, S; Scardi P. (2004), J. Am. Ceram. Soc. 87, 1133-1140.

Lister, S. E.; Radosavljevic Evans, I.; Howard, J. A. K.; Coelho A. and Evans, J. S. O. (2004).
Chemical Communications, Issue 22.

Madelung, Erwin (1918). "Das elektrische Feld in Systemen von regelmäßig angeordneten
Punktladungen." Physikalische Zeitschrift, 19, 524–532.

March, A. (1932). Z. Krist. 81, 285-297. “Mathematische Theorie der Regelung nach der Korn-
gestalt bei affiner Deformation”

References 316

316 References

Markvardsen, A. J.; David, W. I. F.; Johnston, J. and Shankland K. (2001), Acta Cryst. A57, 47

Marquardt, D. W. (1963). J. Soc. Ind. Appl. Math. 11(2), 431-331. “An algorythm for least-
squares estimation of nonlinear parameters”

Martens, I.; Vamvakeros, A.; Martinez, N.; Chattot, R.; Pusa, J.; Blanco, M. V.; Fisher, E. A.;
Asset, T.; Escribano, S.; Micoud, F.; Starr, T.; Coelho, A.; Honkimäki, A.; Bizzotto, D.; Wil-
kinson, D. P.; Jacques, S. D. M.; Maillard, F.; Dubau, D.; Lyonnard, D.; Morin, A.; Drnec, J.;
(2020). arXiv.org, Physics. arXiv:2008.04770v1. "Holistic Multi-scale Imaging of Oxygen
Reduction Reaction Catalyst Degradation in Operational Fuel Cells".

Mooers, B. H. M. (2016). Acta Cryst. D72, 477–487

O'Connor, B. H.; and Raven, M. D. (1988). Powder Diffraction, Vol. 3, No. 1. "Application of the
Rietveld Refinement Procedure in Assaying Powdered Mixtures"

Oszlányi, G. & Süto A. (2004). Acta Cryst. A60, 134-141

Oszlányi, G. & Süto A. (2005). Acta Cryst. A61, 147-152

Oszlányi, G. & Süto A. (2006). Acta Cryst. A63, 156–163

Oszlányi, G.; Süto A.; Czugler, M. & Parkanyi, L. (2006). J. AM. CHEM. SOC. 9 VOL. 128, NO.
26, 8393. “Charge Flipping at Work: A Case of Pseudosymmetry”.

Pawley, J. S. (1981). J. Appl. Cryst. 14, 357

Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.

Scardi, P. & Leoni, M. (2001). Acta Cryst. A 57, 604-613.

Shanno, D. F. (1970). Mathematics of Computing, Vol. 24, pp 647-656. "Conditioning of Quasi-
Newton Methods for Function Minimization"

Favre-Nicolin, V. and Cerny, R. (2002) EPDIC 8 proceedings. “Fox: Modular Approach to Crys-
tal Structure Determination from Powder Diffraction”

Sabine, T. M., Hunter, B. A., Sabine, W. R., Ball, C. J. (1998): J. Appl. Cryst. 31, 47-51

Schneider, T. R. & Sheldrick, G. M. (2002). Acta Cryst. D58, 1772-1779. “Substructure solu-
tion with SHELXD“

Shiono, M. & Woolfson, M. M. (1992). Acta Cryst. A48, 451-456

Vamvakeros, A., Coelho, A. A., Matras, D., Dong, H., Odarchenko, Y., Price, S. W. T., Butler, K.
T., Gutowski, O., Dippel, A.-C., Zimmermann, M., Martens, I., Drnec, J., Beale, A. M. &
Jacques, S. D. M. (2020). J. Appl. Cryst. 53, 1531-1541. "DLSR: a solution to the parallax
artefact in X-ray diffraction computed tomography data".

Verlet, Loup (1967)."Computer "Experiments" on Classical Fluids. I. Thermodynamical Prop-
erties of Lennard−Jones Molecules".Physical Review. 159 (1): 98–103. Bib-
code:1967PhRv..159...98V. doi:10.1103/PhysRev.159.98

https://doi.org/10.1103%2FPhysRev.159.98
https://doi.org/10.1103%2FPhysRev.159.98
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/1967PhRv..159...98V
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1103%2FPhysRev.159.98

References 317

317 References

Whitfield, P. S. and Coelho, A. A. (2016). J. Appl. Cryst. 49, 1806-1809. "Asymmetric band flip-
ping for time-of-flight neutron diffraction data".

Young, R. A. (1993). The Rietveld Method, edited by R.A. Young, IUCr Book Series, Oxford Uni-
versity Press 1993, 1-39. “Introduction to the Rietveld method”

	1. Introduction
	1.1 Running TOPAS in high priority mode
	1.1.1 Running TA.EXE in high priority mode (TOPASH.BAT)
	1.1.2 Running TC.EXE in high priority mode

	1.2 Conventions
	1.3 Input file example (INP format)
	1.4 Test examples
	1.5 TC-INPS.BAT and the aac$ macro
	1.6 TOPAS is 64 bit

	2. Parameters
	2.1 When is a parameter refined
	2.2 User defined parameters - the prm/local keywords
	2.3 Parameter attributes
	2.4 Parameter constraints
	2.5 The local keyword
	2.6 Defining local parameters using $
	2.7 Reporting on equation values
	2.8 Naming of equations
	2.9 existing_prm
	2.10 String, Concat, To_String and To_Prm functions
	2.11 Starting a parameter with a random number
	2.12 Using the % equation character to define a parameter name
	2.13 dummy and dummy_prm keywords
	2.14 Parameter errors and correlation matrix
	2.15 Default parameter limits and LIMIT_MIN / LIMIT_MAX
	2.16 Reserved parameter names
	2.17 Val and Change reserved parameter names
	2.17.1 The "load { }" keyword and attribute equations
	2.17.2 The "move_to $keyword" keyword

	2.18 Automatically saving and loading parameters - load_save_locals
	2.19 Using local to assist in using “for ... {}” loops
	2.20 out_dependences and out_dependences_for
	2.21 The num_runs keyword and preprocessor specifics
	2.21.1 Reserved macro names
	2.21.2 The #list directive – creating arrays of macros
	2.21.3 Getting the number of items in a #list using #list_n
	2.21.4 The File_Variable and File_Variables macro

	2.22 Ingesting files into an INP file using #ingest
	2.23 #external_INP - using external INP files

	3. Equation Operators and Functions
	3.1 'If' and nested 'If' statements
	3.2 Floating point exceptions

	4. The Minimization Routines
	4.1 The Conjugate Gradient Solution method
	4.2 The Marquardt method
	4.3 Approximating the A matrix - the BFGS method
	4.4 Setting A-matrix elements that must-be-zero to zero
	4.5 Line minimization and Parameter extrapolation
	4.6 Restraints and Penalties
	4.7 Minimizing on penalties only
	4.8 Saved refined values and save_best_chi2
	4.9 Error calculation
	4.10 Error determination using SVD and bootstrap errors
	4.11 Error Propagation using prm_with_error
	4.12 xdd_sum and xdd_array
	4.13 Refining on an arbitrary Chi2
	4.14 Reporting on unrefined parameters
	4.15 Summary, Iteration and Refinement Cycle
	4.16 quick_refine and computational issues
	4.17 Simulated annealing and Auto_T
	4.18 Adaptive step size using randomize_on_errors
	4.19 Criteria of fit

	5. Peak Generation and "peak_type"
	5.1 Source emission profiles
	5.2 Peak generation and peak types
	5.3 Convolution and the peak generation stack
	5.4 Speed / Accuracy and peak_buffer_step
	5.5 The peaks buffer, speed and memory considerations
	5.6 An Accurate Voigt
	5.7 Stretching peaks
	5.8 transform_x without recalculating patterns

	6. Reusing objects in large refinements
	7. Deconvolution
	7.1 Deconvolution – Simulated pattern

	8. PDF-Generation
	8.1 PDF-Generating - LiFePO4
	8.1.1 Operation 0 – Fitting peaks to the diffraction pattern
	8.1.2 Operation 1 – Generation G(r) from the fitted peaks
	8.1.3 Correcting the PDF due to a zero error in reciprocal space
	8.1.4 Generating F(Q) from G(r) - gr_to_fq
	8.1.5 PDF-Generation - Fullerene

	9. PDF refinement
	9.1 Displaying partial PDFs
	9.2 pdf_only_eq_0
	9.3 Inter and Intra molecule FWHMs
	9.4 Instrument Sinc function sinc-1.inp
	9.5 Weighting of PDF and 2-Theta type data
	9.6 Test_examples\pdf\beq-2.inp
	9.7 Test_examples\pdf\beq-3.inp
	9.8 Speeding up refinement with rebin_with_dx_of
	9.9 Refining on beq parameters
	9.10 Refining on ADPs in PDF refinement – Uij parameters
	9.11 Multiatom approach to ADPs in PDF refinement
	9.11.1.1 Multiatom approach to ADPs – fitting to G(r) patterns

	9.12 Structure Solution, Simulated Annealing
	9.13 Rigid bodies with PDF data
	9.14 Occupancy merging with PDF data
	9.15 Equivalence of pdf_gauss_fwhm and beq for one atom type

	10. Stacking faults
	10.1 Fitting to a Debye-formulae pattern using ‘stack’
	10.2 Fitting to Kaolinite data
	10.3 Stacking faults and generating sequences of layers
	10.3.1 Generating the same stacking sequences each run
	10.3.2 The SF_Smooth macro
	10.3.3 Fitting to DIFFaX test diamond data
	10.3.4 Stacking faults from layers of different layer heights
	10.3.5 Rietveld-Generated example
	10.3.6 Refining on layer heights

	11. Quantitative Analysis
	11.1 Summary of Quant examples
	11.2 Elemental weight percent constraint
	11.3 Elemental composition and Restraints
	11.4 Amorphous phase composition
	11.5 Using a dummy_str phase to describe amorphous content
	11.6 Quant using hkl_Is or other non-str phases
	11.7 External standard method
	11.8 QUANT Keywords

	12. Magnetic Structure Refinement
	12.1 Magnetic refinement warnings/exceptions
	12.2 Displaying Magnetic moments
	12.3 ‘Decomposing’ Fmag for speed

	13. Rigid bodies
	13.1 Fractional, Cartesian and Z-matrix coordinates
	13.2 Translating part of a rigid body
	13.3 Rotating part of a rigid body around a point
	13.4 Rotating part of a rigid body around a line
	13.4.1 Using Z-matrix together with rotate and translate

	13.5 The simplest of rigid bodies
	13.6 Generation of rigid bodies
	13.7 Rigid body parameter errors propagated to fractional coordinates
	13.8 Z-matrix collinear error information
	13.9 Functions allowing access to rigid-body fractional coordinates
	13.10 Determining the orientation of a known fragment
	13.11 Rigid body macros

	14. Indexing
	14.1 Figure of merit
	14.2 Extinction subgroup determination
	14.3 Reprocessing solutions - DET files
	14.4 Keywords and data structures
	14.5 Keywords in detail
	14.6 Identifying dominant zones
	14.7 *** Probable causes of Failure ***
	14.8 Space groups with identical absences – Extinction subgroups
	14.9 Indexing Equations - Background

	15. Energy Minimization
	15.1 Reporting on the Madelung constant
	15.2 Reporting on the Coulomb potential at a site
	15.3 Enhancements to the grs_interaction
	15.4 Including lattice parameter in grs_interaction(s)
	15.5 Ignoring the Coulomb part of the grs_intercation
	15.6 _rem attribute - Removing/inserting parameters from refinement
	15.7 Using ok_to_continue and _rem
	15.8 Energy minimization-only resulting in the observed structure of AlVO4
	15.9 Determining repulsion parameters for AlVO4
	15.10 A non-ionic model for AlVO4

	16. Molecular dynamics (MD)
	16.1 Molecular dynamics in a general manner
	16.2 Molecular dynamics for atoms
	16.3 Applying a force on atoms

	17. Amazon EC2 cloud computing
	17.1 Operation
	17.2 Pre-requisites
	17.3 Pricing of AWS cloud resources
	17.4 AWS dashboard and operating TC-Cloud
	17.5 Installing AWS CLI on the local computer
	17.6 Operating TC-Cloud from TOPAS (GUI)
	17.7 Terminating/Stopping TC-VMs and tc-mon.a
	17.8 Powering off TC-VMs after 100 minutes of inactivity
	17.9 Retrieving the INP or FC file that gave the best GOF
	17.10 Monitoring, TC-Cloud is independent of the local computer
	17.11 Random number generator automatically seeded
	17.12 CLOUD__ #define and Get(cloud_run_number)
	17.13 ‘Setup Cloud’ details
	17.14 ‘Virtual Machines’ tab options
	17.15 Creating TC-VMs – Spot Instances
	17.16 Choosing the optimum VM type
	17.17 Unable to connect to TC-VMs after local computer restart

	18. Protein Refinement
	18.1 Reading Protein Data Bank (PDB) CIF files
	18.2 Protein Refinement, 6y84, SARS-CoV-2 main protease

	19. Solving proteins at atomic resolution
	19.1 Ab initio solution of triclinic 4lzt
	19.2 Solution of non-triclinic lattices using a known atomic position
	19.3 Ab initio solution of 5da6 in space group R32

	20. Miscellanous
	20.1 Outputting special characters
	20.2 Iterating over internal data-tree nodes using ‘for’
	20.3 Command prompt output during INP file loading using print
	20.4 Sorting output by columns using _sort_dec or _sort_inc
	20.5 Creating many xdds at once using new and xdd_file
	20.6 seed, #seed_eqn, seed-tc.txt, seed-tb.txt, Rand
	20.7 Threading
	20.7.1 Setting the maximum number of threads

	20.8 Restraining background using the Bkg_at function
	20.9 Calculation of structure factors
	20.9.1 Friedel pairs
	20.9.2 Powder data
	20.9.3 Single crystal data
	20.9.4 The Flack parameter
	20.9.5 Single Crystal Output
	20.9.6 2θ point by point calculation of f0 and beq

	20.10 Convolution
	20.10.1 Instrument and sample convolutions
	20.10.2 Convolutions in general
	20.10.3 Capillary convolution for a focusing convergent beam
	20.10.4 ft_conv
	20.10.4.1 ft_conv compared to user_defined_convolution
	20.10.4.2 FFT versus direct summation

	20.10.5 WPPM
	20.10.5.1 WPPM in 2Th space
	20.10.5.2 WPPM using fit_obj(s)
	20.10.5.3 WPPM using WPPM_ft_conv

	20.10.6 Microstructure convolutions
	20.10.6.1 Preliminary equations
	20.10.6.2 Crystallite size and strain

	20.11 Loading of INP files
	20.11.1 if {} else if {} else {}

	20.12 Functions – fn, def, return, noinline
	20.12.1 Subject independent single crystal refinement
	20.12.2 Computer algebra and out_refinement_stats

	20.13 CIF
	20.14 Laue refinement
	20.15 Learnt Shapes for Background or Otherwise
	20.16 Emission Profile with Absorption Edges
	20.17 scale_phase_X keyword
	20.18 Refining on f0, f’ and f”
	20.18.1 Using a user defined table to input f0 values via user_y

	20.19 Invalid f1 and f11
	20.20 Isotopes and Atom Names
	20.21 Atomic data files and associated sources
	20.22 Removing Phases during refinement
	20.23 Numerical Lorentzian and Gaussian Convolutions
	20.24 Space groups, hkls and symmetry operators
	20.24.1 User defined rotational matrices

	20.25 Defining hkls using use_hklm
	20.26 Cross correlation function
	20.27 Site identifying strings
	20.28 Occupancies and symmetry operators
	20.29 Pawley and Le Bail extraction
	20.30 Anisotropic refinement models
	20.30.1 Spherical harmonics
	20.30.2 Miscellaneous models using User defined equations

	20.31 Simulated annealing and structure determination
	20.31.1 Penalties used in structure determination
	20.31.2 Bond length restraints

	20.32 Not saving extrapolated peaks when doing intensity derivatives
	20.33 Applying lp_search to TOF data
	20.34 Correction for dispersion using modify_peak_eqn
	20.35 File types and formats
	20.36 Batch mode operation – TC.EXE

	21. Keywords
	21.1 Data structures
	21.2 Alphabetical listing of keywords

	22. Macros and Include files
	22.1 The macro directive
	22.1.1 Directives with global scope
	22.1.2 Pre-processor equations and #prm, #if, #elseif, #out
	22.1.3 A macro that repeats text using #out
	22.1.4 Directives invoked on macro expansion
	22.1.5 Defining unique parameters within macros
	22.1.6 Superfluous parentheses and the '&' Type for macros

	22.2 Overview
	22.2.1 xdd macros
	22.2.2 Lattice parameters
	22.2.3 Emission profile macros
	22.2.4 Instrument and instrument convolutions
	22.2.5 Phase peak_type's
	22.2.6 Quantitative Analysis
	22.2.7 2Th Corrections
	22.2.8 Intensity Corrections
	22.2.9 Bondlength penalty functions
	22.2.10 Reporting macros
	22.2.11 Neutron TOF
	22.2.12 Miscalleneous

	23. Indexing
	23.1 Figure of merit
	23.2 Extinction subgroup determination
	23.3 Reprocessing solutions - DET files
	23.4 Keywords and data structures
	23.5 Keywords in detail
	23.6 Identifying dominant zones
	23.7 *** Probable causes of Failure ***
	23.8 Space groups with identical absences – Extinction subgroups
	23.9 Indexing Equations - Background

	24. Charge-flipping
	24.1 Charge-flipping usage
	24.1.1 Perturbations
	24.1.2 The Ewald sphere, weak reflections and CF termination
	24.1.3 Powder data considerations
	24.1.3.1 Powder data, the A matrix and the Tangent formula
	24.1.3.2 The algorithm of Oszlányi & Süto (2005) and F000

	24.2 Charge-flipping Investigations / Tutorials
	24.2.1 Preventing uranium atom solutions using pick_atoms
	24.2.2 The tangent formula on powder data
	24.2.3 Pseudo symmetry – 441 atom oxide
	24.2.4 Origin finding and symmetry_obey_0_to_1
	24.2.5 symmetry_obey_0_to_1 on poor resolution data
	24.2.6 Sharpening clouds - extend_calculated_sphere_to
	24.2.7 A difficult powder, CF-SUCROSE.INP
	24.2.8 Increasing contrast in R-factors

	24.3 Charge Flipping and neutron_data
	24.4 Charge-flipping Examples
	24.5 Keywords in detail

	25. GUI Functionality
	1.1 TOPAS is DPI aware
	1.2 Antialiasing and OpenGL
	1.3 Scan-window viewing operations
	1.4 Selecting files for display using grep regular expressions
	1.5 gui_text keyword now ignored by the kernel
	1.6 Displaying a phase with and without background
	1.7 How atoms are displayed in OpenGL
	1.8 Tracking atomic movements graphically
	1.9 x_calculation_step deleted when constant x-axis step size detected
	1.10 hide_peak_sticks
	25.1 User defined phase colour, line width and point size (_clp)
	25.2 Highlighting/displaying phases and hkl tick marks
	25.3 TOF x-axis can be displayed as d-spacing, Q or tof
	25.4 Surface plots – 2D with offsets
	25.4.1 Display hkl ticks on Surface plots
	25.4.2 hkl ticks are now corrected for zero errors
	25.4.3 Inserting peaks and identifying scans
	25.4.4 2D-offset Surface plots
	25.4.5 2D-offset Planview plots
	25.4.6 OpenGL Surface plots
	25.4.7 OpenGL – Weighted difference for colours

	25.5 Normalizing scans within a Scan Window
	25.6 Plotting phases above background
	25.7 Plotting fit_objs
	25.8 Display of Normalized SigmaYobs^2
	25.9 Cumulative Chi2
	25.10 Correlation Matrix display
	25.11 Fading a structure
	25.12 Normals Plot
	25.13 Improvements to the Grid
	25.14 Mouse operation in OpenGL Graphics

	26. References

